Open Access
Issue |
BIO Web Conf.
Volume 100, 2024
International Scientific Forum “Modern Trends in Sustainable Development of Biological Sciences” (IFBioScFU 2024)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 8 | |
Section | Interdisciplinary Research in Biophysics, Biomedicine, and Neuroscience | |
DOI | https://doi.org/10.1051/bioconf/202410001015 | |
Published online | 08 April 2024 |
- A.K.I. Chiang, C.J. Rennie, P.A. Robinson, S.J. van Albada, & C.C. Kerr, Age trends and sex differences of alpha rhythms including split alpha peaks. Clin. Neurophysiol. 122, 1505–1517 (2011). https://doi.org/10.1016/j.clinph.2011.01.040 [CrossRef] [Google Scholar]
- J. Edgar, K. Heiken, Y. Chen, & J. Herrington, Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume. J. Autism Dev. Disord. 45, 795–804 (2015). https://doi.org/10.1007/s10803-014-2236-1 [CrossRef] [PubMed] [Google Scholar]
- A. Kamzanova, A. Kustubayeva, G. Matthews, Diagnostic monitoring of vigilance decrement using EEG workload indices. Proc. Hum. Factors Ergon. Soc. 203–207 (2012). https://doi.org/10.1177/0018720814526617 [Google Scholar]
- A. Kamzanova, G. Matthews, A. Kustubayeva, EEG Coherence Metrics for Vigilance: Sensitivity to Workload, Time-on-Task, and Individual Differences. Appl. Psychophys. Biof. 45 (3), 183–194 (2020). https://doi.org/10.1007/s10484-020-09461-4 [CrossRef] [PubMed] [Google Scholar]
- A.M. Kustubayeva, A. Tolegenova, G. Matthews, EEG-brain activity in different strategies of emotions' self-regulation: Suppression and reappraisal. Psikholog. Zh., 34 (4), 58–68 (2013). [Google Scholar]
- A. Kustubayeva, M. Zholdassova, G. Borbassova, G. Matthews, Temporal changes in ERP amplitudes during sustained performance of the Attention Network Test. Int. J. Psychophysiol. 182, 142–158 (2022) https://doi.org/10.1016/j.ijpsycho.2022.10.006 [CrossRef] [Google Scholar]
- T.H. Grandy, M. Werkle-Bergner, C. Chicherio, M. Lövdén, F. Schmiedek, & U. Lindenberger, Individual alpha peak frequency is related to latent factors of general cognitive abilities. Neuroimage, 79, 10–18 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.059 [CrossRef] [PubMed] [Google Scholar]
- C. Richard Clark, M.D. Veltmeyer, R.J. Hamilton, E. Simms, R. Paul, D. Hermens, & E. Gordon, Spontaneous alpha peak frequency predicts working memory performance across the age span. Int. J. Psychophysiol. 53, 1–9 (2004). https://doi.org/10.1016/j.ijpsycho.2003.12.011 [CrossRef] [Google Scholar]
- X. Li, G. Ouyang, D.A. Richards, Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 73 (3), 232–241 (2007). https://doi.org/10.1016/j.eplepsyres.2007.08.002 [Google Scholar]
- A. Piryatinska, B. Darkhovsky, A. Kaplan, Binary classification of multichannel-EEG records based on the is an element-of-complexity of continuous vector functions. Comput. Methods Programs Biomed. 152, 131–139 (2017). https://doi.org/10.1016/j.cmpb.2017.09.001 [CrossRef] [Google Scholar]
- V. Anderson, E. Northam, J. Hendy, & J. Wrennall, Developmental neuropsychology: A clinical approach. (Routledge, London, 2018) [CrossRef] [Google Scholar]
- C. Barriga-Paulino, A. Flores, & C. Gomez, Developmental changes in the EEG rhythms of children and young adults analyzed by means of correlational, brain topography, and principal component analysis. J. Psychophysiol. 25 (3), 143–158 (2011). https://doi.org/10.1027/0269-8803/a000052 [CrossRef] [Google Scholar]
- C. Benniger, P. Matthis, & D. Scheffner, EEG development of healthy boys and girls: Results of a longitudinal study. Electroencephalogr Clin Neurophysiol, 57 (1), 1–12 (1984). https://doi.org/10.1016/0013-4694(84)90002-6 [CrossRef] [PubMed] [Google Scholar]
- C.M. Bishop, Pattern recognition and machine learning. J. Chem. Inf. Model. 53, 049901 (2006). https://doi.org/10.1117/1.2819119 [Google Scholar]
- O.A. Zoubi, C.K. Wong, R.T. Kuplicki, H. Yeh, A. Mayeli, H. Refai, et al. Predicting age from brain EEG signals—a machine learning approach. Front. Aging Neurosci. 10, 184 (2018). https://doi.org/10.3389/fnagi.2018.00184 [CrossRef] [Google Scholar]
- D.A. Farber, R.I. Machinskaya, A.V. Kurgansky, et al. Functional organization of the brain in the period of preparation for recognizing fragmented images in seven- to eightyear-old children and adults. Hum. Physiol. 40, 475–482 (2014). https://doi.org/10.1134/S036211971405003X [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.