Open Access
Issue |
BIO Web Conf.
Volume 100, 2024
International Scientific Forum “Modern Trends in Sustainable Development of Biological Sciences” (IFBioScFU 2024)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 6 | |
Section | Current Issues in Biotechnology, Microbiology, and Bioengineering | |
DOI | https://doi.org/10.1051/bioconf/202410002004 | |
Published online | 08 April 2024 |
- M.A. Croxen, B.B. Finlay, Molecular Mechanisms of Escherichia coli Pathogenicity. Nat. Rev. Microbiol., 8, 26–38 (2010). https://doi:10.1038/nrmicro2265 [CrossRef] [PubMed] [Google Scholar]
- P. Pokharel, S. Dhakal, C.M. Dozois, The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms, 11 (2), 344 (2023). https://doi.org/10.3390/microorganisms11020344 [CrossRef] [PubMed] [Google Scholar]
- A. Torres Luque, C. Gonzalez Moreno, S.E. Pasteris, J.A. Orden, R. de la Fuente, M.C. Otero, Antimicrobial Resistant Escherichia coli in the Reproductive Tract Microbiota of Cows and Sows. Comp. Immunol. Microbiol. Infect. Dis., 55, 13–19 (2017). https://doi.org/10.1016/j.cimid.2017.09.002 [CrossRef] [Google Scholar]
- W.J. Sojka, R.B.A. Carnaghan. Escherichia coli infection in poultry. Research in Veterinary Science., 2, pp. 340–352 (1961) https://doi.org/10.1016/S0034-5288(18)34938-5 [CrossRef] [Google Scholar]
- A. Agunos, D. Leger, C. Carson. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can. Vet. J., 53, pp. 1289–1300 (2012) [Google Scholar]
- M.F. Landoni, G. Albarellos. The use of antimicrobial agents in broiler chickens. Vet. J., 205, pp. 21–27 (2015) https://doi:10.1016/j.tvjl.2015.04.016. [CrossRef] [Google Scholar]
- S.W. Page, P. Gautier. Use of antimicrobial agents in livestock. Rev. Sci. Tech., 31, pp.145–188 (2012) http://dx.doi.org/10.20506/rst.31.1.2106. [CrossRef] [PubMed] [Google Scholar]
- O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. London: Review on Antimicrobial Resistance, 2016; pp. 80 [Google Scholar]
- V. Goetting, K.A. Lee, L.A. Tell. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature. J. Vet. Pharmacol. Ther., 34, pp. 521–556 (2011) https://doi.org/10.1111/j.1365-2885.2011.01287.x [CrossRef] [Google Scholar]
- K. Żbikowska, M. Michalczuk, B. Dolka. The use of bacteriophages in the poultry industry. Animals., 10, 872 (2020) https://doi.org/10.3390/ani12233378 [Google Scholar]
- A. Wernicki, A. Nowaczek, R. Urban-Chmiel. Bacteriophage therapy to combat bacterial inf ections in poultry. Virol. J., 14, 179 (2017) https://doi.org/10.1186/s12985-017-0849-7 [Google Scholar]
- M.S. Alexyuk, A.P. Bogoyavlenskiy, P.G. Alexyuk, K.S. Akanova, Y.S. Moldakhanov, A. Manakbayeva, V.E. Berezin. Complete Genome Sequence of a Gamaleyavirus Phage, Lytic against Avian Pathogenic Escherichia coli. Microbiology Resource Announcements., (2022) https://doi.org/10.1128/mra.00896-22 [Google Scholar]
- P. Alexyuk, A. Bogoyavlenskiy, M. Alexyuk, K. Akanova, Y. Moldakhanov, V. Berezin. Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis. Microorganisms., 11 (6), 1524 (2023) https://doi.org/10.3390/microorganisms11061524 [CrossRef] [Google Scholar]
- W.C. Summers. Bacteriophage therapy. Annu Rev Microbiol., 55, pp. 437–451 (2001) https://doi.org/10.1146/annurev.micro.55.1.437. [CrossRef] [PubMed] [Google Scholar]
- W.E. Huff, G.R. Huff, N.C. Rath, A.M. Donoghue. Evaluation of the influence of bacteriophage titer on the treatment of colibacillosis in broiler chickens. Poult Sci., 85, pp. 1373–1377 (2006) https://doi.org/10.1093/ps/85.8.1373 [CrossRef] [Google Scholar]
- C. Loc Carrillo, R.J. Atterbury, A. El-Shibiny, P.L. Connerton, E. Dillon, A. Scott, I.F. Connerton. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol., 71, pp. 6554–6563 (2005) https://doi:10.1128/AEM.71.11.6554-6563.2005 [CrossRef] [PubMed] [Google Scholar]
- W. Huff, G. Huff, N. Rath, J. A. Balog, A.M. Donoghue. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection Poult Sci., 82, pp. 1108–1112 (2003) https://doi:10.1093/ps/82.7.1108. [CrossRef] [Google Scholar]
- H.W. Smith, M.B. Huggins. Effectiveness of phages in treating experimental Escherichia coli Diarrhoea in calves, piglets and lambs. Microbiology., 129, pp. 2659–2675 (1983) DOI: 10.1099/00221287-129-8-2659. [CrossRef] [Google Scholar]
- W. Huff, G. Huff, N. Rath, J. Balog, A. Donoghue. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci., 8, pp. 1486–1491 (2002) https://doi.org/10.1093/ps/81.10.1486 [CrossRef] [Google Scholar]
- G.G. Bogovazova, N.N. Voroshilova, V.M. Bondarenko. The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh Mikrobiol Epidemiol Immunobiol., 4, pp. 5–8 (1991) [Google Scholar]
- S. Chhibber, S. Kaur, S. Kumari. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol., 57(Pt 12), pp. 1508–1513 (2008) https://doi.org/10.1099/jmm.0.2008/002873-0 [Google Scholar]
- J.W. Jun, T.H. Shin, J.H. Kim, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis, 210(1), pp. 72–78 (2014) https://doi.org/10.1093/infdis/jiu059 [CrossRef] [PubMed] [Google Scholar]
- C.S. McVay, M. Velasquez, J.A. Fralick. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother., 51(6), pp. 1934–1938 (2007) https://doi.org/10.1128/aac.01028-06 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.