Open Access
Issue |
BIO Web Conf.
Volume 100, 2024
International Scientific Forum “Modern Trends in Sustainable Development of Biological Sciences” (IFBioScFU 2024)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 5 | |
Section | Current Issues in Biotechnology, Microbiology, and Bioengineering | |
DOI | https://doi.org/10.1051/bioconf/202410002013 | |
Published online | 08 April 2024 |
- X. Zhou, W. Lin, L. Tong, X. Liu, K. Zhong, L. Liu, L. Wang, S. Zhou, Hypolipidaemic effects of oat flakes and beta-glucans derived from four Chinese naked oat (Avena nuda) cultivars in Wistar-Lewis rats. J. Sci. Food Agric. 96, 644–649 (2016). https://doi.org/10.1002/jsfa.7135. [CrossRef] [PubMed] [Google Scholar]
- S. Kharwar, S. Bhattacharjee, A.K. Mishra, Disentangling the impact of sulfur limitation on exopolysaccharide and functionality of Alr2882 by in silico approaches in Anabaena sp. PCC 7120. Appl. Biochem. Biotechnol. 193, 1447–1468 (2021). https://doi.org/10.1007/s12010-021-03501-3. [CrossRef] [PubMed] [Google Scholar]
- D.S. Patel, R. Pendrill, S.S. Mallajosyula, G. Widmalm, A.D. MacKerell, Conformational properties of a-or ß-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiments. J. Phys. Chem. 118, 2851–2871 (2014). https://doi.org/10.1021/jp412051v. [CrossRef] [PubMed] [Google Scholar]
- D. Park, S. Jagtap, S.K. Nair, Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases. J. Biol. Chem. 289, 8645–8655 (2014). https://doi.org/10.1074/jbc.M113.531111. [CrossRef] [Google Scholar]
- A. Mühlroth, K. Li, G. Rokke, P. Winge, Y. Olsen, M.F. Hohmann-Marriott, O. Vadstein, A.M. Bones, Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar. Drugs, 11, 4662–4697 (2013). https://doi.org/10.3390/md11114662. [CrossRef] [Google Scholar]
- M. O. Bauenova, A. K. Sadvakasova, B.D. Kossalbayev, G. Yilmaz, Z. Huang, J. Wang, H. Balouch, D.E. Zaletova, M.A. Lyaguta, H.F. Alharby & S. I. Allakhverdiev, Optimising microalgae-derived butanol yield. I. J. Hydr. Ener. 49, 593–601 (2024). http://dx.doi.org/10.1016/j.ijhydene.2023.11.065. [CrossRef] [Google Scholar]
- M.N. Pimenova, N.N. Grechushkina, L.G. Azova, A.I. Netrusov, E.V. Semenova, N.N. Kolotilova, L.M. Zaharchuk, V.V. Zinchenko, S.I. Mylnikova, M.V. Nefedova, I.V. Botvinko, A guide to practical classes in microbiology (MGU, Moscow, 2005) [Google Scholar]
- E. Del Amo-Mateos, J.C. López-Linares, M.T. García-Cubero, S. Lucas, M. Coca, Green biorefinery for sugar beet pulp valorisation: Microwave hydrothermal processing for pectooligosaccharides recovery and biobutanol production. Indus. Crops Product. 184, 115060 (2022). http://dx.doi.org/10.1016/j.indcrop.2022.115060. [CrossRef] [Google Scholar]
- H. Sun, W. Zhao, X. Mao, Y. Li, T. Wu, F. Chen, High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotech. Biofuel. 11, 227 (2017). https://doi.org/10.1186/s13068-018-1225-6. [Google Scholar]
- S.-H. Ho, Y.-D. Chen, C.-Y. Chang, Y.-Y. Lai, C.-Y. Chen, A. Kondo, et al. Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes. Biotechnol. Biofuels. 10, 27 (2017). https://doi.org/10.1186/s13068-017-0712-5. [CrossRef] [Google Scholar]
- M.-K. Ji, H.-S. Yun, J.-H. Hwang, E.-S. Salama, B.-H. Jeon, J. Choi, Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environmen. Technol. 38, 2085–2092 (2017). https://doi.org/10.1080/09593330.2016.1246145. [Google Scholar]
- C.Y. Chen, X.Q. Zhao, H.W. Yen, et al. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1–10 (2013). http://dx.doi.org/10.1016/j.bej.2013.03.006. [CrossRef] [Google Scholar]
- J.R. Xia, K.S. Gao, Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J. Integr. Plant. Biol. 47, 668–675 (2005). http://dx.doi.org/10.1111/j.1744-7909.2005.00114.x. [CrossRef] [Google Scholar]
- Y.-S. Cheng, J.M. Labavitch, J.S. Vander Gheynst, Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Letter. Appl. Microbiol. 60, 1–7 (2015). https://doi.org/10.1111/lam.12320. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.