Open Access
Issue |
BIO Web Conf.
Volume 100, 2024
International Scientific Forum “Modern Trends in Sustainable Development of Biological Sciences” (IFBioScFU 2024)
|
|
---|---|---|
Article Number | 02021 | |
Number of page(s) | 5 | |
Section | Current Issues in Biotechnology, Microbiology, and Bioengineering | |
DOI | https://doi.org/10.1051/bioconf/202410002021 | |
Published online | 08 April 2024 |
- N. Alexandratos, J. Bruinsma World agriculture towards 2030/2050: the 2012 revision: ESA Working Paper No. 12-03. Rome. 2012. www.fao.org/economic/esa [Google Scholar]
- J.G. Ellis, E.S. Lagudah, W. Spielmeyer, P.N. Dodds. The past, present and future of breeding rust resistant wheat. Front Plant Sci. 5, 641 (2014). DOI: 10.3389/fpls.2014.00641. [Google Scholar]
- R.P. Singh, P.K. Singh, J. Rutkoski, D.P. Hodson, X. He, L.N. Jørgensen, et al. Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol. 54, 303–322, (2016) DOI: 10.1146/annurev-phyto-080615-095835 [Google Scholar]
- M.K. Kojshibaev. Bolezni pshenicy // Ankara: FAO, 2018. 365c. ISBN 978-92-5-130142-5 [Google Scholar]
- X.M. Chen Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am. J. Plant Sci. 4, 608–627 (2013). DOI: 10.4236/ajps.2013.43080 [Google Scholar]
- L. Liu, M.N. Wang, J.Y. Feng, D.R. See, S.M. Chao, X.M. Chen. Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theor. Appl. Genet. 131, 835–1849, (2018). DOI: 10.1007/s00122-018-3116-4. [Google Scholar]
- X.M. Chen Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Sec 12 (2), 239–251, (2020). DOI: 10.1007/s12571-020-01016-z [CrossRef] [Google Scholar]
- M. Maccaferri, J. Zhang, P. Bulli, Z. Abate, S. Chao, D. Cantu, E. Bossolini, X. Chen, M. Pumphrey, J. Dubcovsky A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3: Genes, Genomes, Genet. 5, 449–465, (2015). [Google Scholar]
- P. Bulli, J. Zhang, S. Chao, X. Chen, M. Pumphrey. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3: Genes, Genomes, Genet. 6 (8), 2237–2253, (2016). DOI: 10.1534/g3.116.028407 [Google Scholar]
- M.A.J. Parry, P.J. Madgwick, C. Bayon, K. Tearall, A. Hernandez-Lopez, M. Baudo, et al. Mutation discovery for crop improvement. J. Exp. Botany. 60 (10), 2817–2825, (2009) [Google Scholar]
- Y. Oladosua, M.Y. Rafiia, N. Abdullaha, G. Hussind, A. Ramlie, H.A. Rahimf, et al. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol. Biotechnol. Equip., 30(1), (2016). DOI: 10.1080/13102818.2015.1087333 [Google Scholar]
- H. Campbell, M.J. Zhang, L. Giroux, Y. Feiz, M. Jin, X. Wang, et al. A mutagenesis-derived broad-spectrum disease resistance locus in wheat. Theor Appl Genet. 125 (2), 391–404, (2012). DOI: 10.1007/s00122-012-1841-7 [Google Scholar]
- L. Boyd, P.H. Smith, N. Hart. Mutants in wheat showing multipathogen resistance to biotrophic fungal pathogens. Plant Pathol. 55, 475–484, (2006) DOI: 10.1111/j.1365-3059.2006.01402.x. [Google Scholar]
- J. Yin, C. Zh. Fang, P. Sun, X. Zhang, Ch. Zhang, et al. Rapid identification of a stripe rust resistant gene in a space-induced wheat mutant using specific locus amplified fragment (SLAF) sequencing. Scientific Reports 8(3086), (2018) DOI: 10.1038/s41598-018-21489-5. [Google Scholar]
- S.S. Kenzhebayeva, G. Doktyrbay, N.M. Capstaff, F. Sarsu, N.Z. Omirbekova, T. Eilam, et al. Searching a spring wheat mutation resource for correlations between yield, grain size, and quality parameters. J. Crop. Improv. 31 (2), 208–228, (2017) DOI: 10.1080/15427528.2016.1276990 [Google Scholar]
- S. Kenzhebayeva, A. Abekova, S. Atabayeva, G. Yernazarova, N. Omirbekova, G. Zhang et al. Mutant lines of spring wheat with increased iron, zinc, and micronutrients in grains and enhanced bioavailability for human health. Biomed. Res. Internat. 1-10, (2019) DOI: 10.1155/2019/9692053 [Google Scholar]
- Kenzhebayeva S., Atabayeva S., Sarsu F., Abekova A., Shoinbekova S., Omirbekova N., et al. Organ-specific expression of genes involved in iron homeostasis in wheat mutant lines with increased grain iron and zinc content. PeerJ. (2022) 10:e13515. DOI: 10.7717/peerj.13515 [Google Scholar]
- S. Kenzhebayeva, S.D. Atabayeva, F. Sarsu. Iron-deficiency response and differential expression of iron homeostasis related genes in spring wheat mutant lines with increased grain iron content. Crop Pasture Sci. 2, 127–137 (2021) DOI: 10.1071/cp21136 [Google Scholar]
- A. Riaz, S. Periyannan, E. Aitken, L. Hickey. A rapid phenotypic method for adult plant resistance to leaf rust in wheat. Plant Methods. 12, 17, (2016). DOI: 10.1186/s13007-016-0117-7. [Google Scholar]
- A. Hubbard, C.M. Lewis, K. Yoshida et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 6, 23 (2015). https://doi.org/10.1186/s13059-015-0590-8 [CrossRef] [PubMed] [Google Scholar]
- M.S. Hovmøller; S. Walter, R.A. Bayles, A. Hubbard, K. Flath, N. Sommerfeldt, et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 65 (3), 402–411 (2016). http://dx.doi.org/10.1111/ppa.12433 [Google Scholar]
- H. Zetzsche, A. Serfling, F. Ordon. Breeding progress in seedling resistance against various races of stripe and leaf rust in European bread wheat. Crop Breed Genet Genom. (2019). 1:e190021. DOI: 10.20900/cbgg20190021 [Google Scholar]
- R. Rohringer, W.K. Kim, D.J. Samborski, N.K. Howes. Calcofluor: an optical brightener for fluorescence microscopy of fungal plant parasites in leaves. Phytopathology. 67, 808–810 (1977). DOI: 10.1094/Phyto-67-808 [Google Scholar]
- S. Kenzhebayeva, S. Mazkirat, S. Shoinbekova, S. Atabayeva, A. Abekova, N. Omirbekova, G. Doktyrbay, et al. Phenotyping and exploitation of Kompetitive allele-specific PCR assays for genes underpinning leaf rust resistance in new spring wheat mutant lines. Curr. Issues Mol. Biol. 46, 689–709 (2024). https://doi.org/10.3390/cimb4601004 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.