Open Access
Issue |
BIO Web Conf.
Volume 101, 2024
The 5th International Conference on Life Sciences and Biotechnology (ICOLIB 2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 13 | |
Section | Applied Science | |
DOI | https://doi.org/10.1051/bioconf/202410101006 | |
Published online | 09 April 2024 |
- N.-J. Koffi and S. Okabe, High voltage generation from wastewater by microbial fuel cells equipped with a newly designed low voltage booster multiplier (LVBM). Sci. Rep. 10, 18985 (2020). https://doi.org/10.1038/s41598-020-75916-7 [CrossRef] [Google Scholar]
- J. Prasad and R.-K. Tripathi, Review on improving microbial fuel cell power management systems for consumer applications. Energy Reports. 8, 1041810433, (2022). https://doi.org/10.1016/j.egyr.2022.08.192 [Google Scholar]
- Y. Wang, J. Wu, S. Yang, H. Li, and X. Li, Electrode modification and optimization in air-cathode single-chamber microbial fuel cells. Int. J. Environ. Res. Public Health. 15 (2018) https://doi.org/10.3390/ijerph15071349 [Google Scholar]
- T. Sangeetha, W.-M. Yan, P.-T. Chen, C.-J. Yang, and K. D. Huang, Electrochemical polarization analysis for optimization of external operation parameters in zinc fuel cells. RSC Adv. 10, 2880728818 (2020). https://doi.org/10.1039/d0ra04454g [CrossRef] [Google Scholar]
- K. Gunaseelan, S. Gajalakshmi, S.-K. Kamaraj, J. Solomon, and D. A. Jadhav, Electrochemical losses and its role in power generation of microbial fuel cells bt - bioelectrochemical systems: vol.1 principles and processes, (P. Kumar and C. Kuppam, Eds., Singapore: Springer Singapore, 2020). https://doi.org/10.1007/978-981-15-6872-5_5 [Google Scholar]
- B. Kim, S.-V. Mohan, D. Fapyane, and I.-S. Chang, Controlling voltage reversal in microbial fuel cells. Trends Biotechnol. 38, 667678 (2020). https://doi.org/10.1016/j.tibtech.2019.12.007 [Google Scholar]
- R.-H. Mahmoud, O.-M. Gomaa, and R.-Y.-A. Hassan, Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Adv. 12, 57495764 (2022). https://doi.org/10.1039/D1RA08487A. [Google Scholar]
- A. Mukherjee, V. Patel, M.-T. Shah, D.-A. Jadhav, N.-S. Munshi, A.-D. Chendake, D. Pant, Effective power management system in stacked microbial fuel cells for onsite applications. J. Power Sources. 517, 230684 (2022). https://doi.org/10.1016/j.jpowsour.2021.230684. [CrossRef] [Google Scholar]
- R.-F. Feito, T. Younas, and R.-M. Dinsdale, Evaluation of a comprehensive power management system with maximum power point tracking algorithm for multiple microbial fuel cell energy harvesting. Bioelectrochemistry. 155, 108597 (2024). https://doi.org/10.1016/j.bioelechem.2023.108597. [CrossRef] [Google Scholar]
- J. An, B. Kim, I.-S. Chang, and H.-S. Lee, Shift of voltage reversal in stacked microbial fuel cells. J. Power Sources. 278, 534539 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.112. [Google Scholar]
- J. An and H.-S. Lee, Occurrence and implications of voltage reversal in stacked microbial fuel cells. ChemSusChem. 7 (2014). https://doi.org/10.1002/cssc.201300949. [Google Scholar]
- D. Zhang, F. Yang, T. Shimotori, K.-C. Wang, and Y. Huang, Performance evaluation of power management systems in microbial fuel cell-based energy harvesting applications for driving small electronic devices. J. Power Sources. 217, 6571 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.013. [Google Scholar]
- S. Jamal, N.-M.-L. Tan, and J. Pasupuleti, A review of energy management and power management systems for microgrid and nanogrid applications. Sustainability. 13 (2021). https://doi.org/10.3390/su131810331. [Google Scholar]
- J.-E. Mink, J.-P. Rojas, B.-E. Logan, and M.-M. Hussain, Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 pL) microbial fuel cell. Nano Lett. 12, 791795 (2012). https://doi.org/10.1021/nl203801h. [Google Scholar]
- A.-S. Vishwanathan, Microbial fuel cells: a comprehensive review for beginners. 3 Biotech. 11, 248 (2021). https://doi.org/10.1007/s13205-021-02802-y. [Google Scholar]
- H. Roy, T.-U. Rahman, N. Tasnim, J. Arju, M.-M. Rafid, M.-R. Islam, M.-N. Pervez, Y. Cai, V. Naddeo, M.-S. Islam, Microbial fuel cell construction features and application for sustainable wastewater treatment. Membranes. 13 (2023). https://doi.org/10.3390/membranes13050490. [Google Scholar]
- M. Abdollahi, S. Al-Sbei, M.-A. Rosenbaum, and F. Harnisch, The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO(2). Front. Microbiol. 13, 947550 (2022). https://doi.org/10.3389/fmicb.2022.947550. [CrossRef] [Google Scholar]
- Z. Yang, H. Li, N. Li, M.-F. Sardar, T. Song, H. Zhu, X. Xing, C. Zhu, Dynamics of a bacterial community in the anode and cathode of microbial fuel cells under sulfadiazine pressure. International Journal of Environmental Research and Public Health. 19, (2022). https://doi.org/10.3390/ijerph19106253. [Google Scholar]
- J. Wang, K. Ren, Y. Zhu, J. Huang, and S. Liu, A review of recent advances in microbial fuel cells: preparation, operation, and application. Biotech (Basel (Switzerland)). 11, (2022). https://doi.org/10.3390/biotech11040044. [Google Scholar]
- G. Najafpour, A. Tardast, M. Rahimnejad, A.-A. Ghoreyshi, and H. Zare, Fabrication and operation of a novel membrane-less microbial fuel cell as a bioelectricity generator. Iran. Jounal Energy Environ. 3, 1-5 (2012). https://doi.org/10.5829/idosi.ijee.2012.03.05.01. [CrossRef] [Google Scholar]
- R. Borah, F.-R. Hughson, J. Johnston, and T. Nann, On battery materials and methods. Mater. Today Adv. 6, 100046 (2020). https://doi.org/10.1016/j.mtadv.2019.100046. [CrossRef] [Google Scholar]
- K. A. Dwivedi, S.-J. Huang, and C.-T. Wang, Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review. Chemosphere. 287, 132248 (2022). https://doi.org/10.1016/j.chemosphere.2021.132248. [CrossRef] [Google Scholar]
- K. Ajit, V.-D. Anand, R.-M. Niharika, B. Harikrishna, Y.-A. Kumar, and H. Krishnan, Scaling up of MFC technology using cost effective electrodes for treatment of kitchen wastewater. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.132. [Google Scholar]
- T. Mulyono, D.-M. Hutamia, I. Rofi’i, M. Misto, A.-T. Nugroho, and Y.-C. Hariadi, The application of cows rumen for electricity generation through the implementation of a ceramic-based microbial fuel cell system. J. ILMU DASAR. 25, (2024). https://doi.org/10.19184/jid.v25i1.44448. [Google Scholar]
- S. Tri Mulyono, Misto, Busroni, “Bioelectricity generation in biological fuel cell.” Centre of Biomass and Renewable Energy. 423429 (2020). https://doi.org/10.14710/ijred.2020.30145. [Google Scholar]
- T. Mulyono, Bioelectricity generation from single-chamber microbial fuel cells with various local soil media and green bean sprouts as nutrient. 9, 423429 (2020). https://doi.org/10.14710/ijred.2020.30145. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.