Open Access
Issue |
BIO Web Conf.
Volume 109, 2024
Conference on Water, Agriculture, Environment and Energy (WA2EN2023)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bioconf/202410901016 | |
Published online | 20 May 2024 |
- O. Uncu, & B. Ozen. Importance of some minor compounds in olive oil authenticity and quality. Trends Food Sci. Technol. 100, 164–176 (2020). https://doi.org/10.1016/j.tifs.2020.04.013 [CrossRef] [Google Scholar]
- B. Bermudez, S. Lopez, A. Ortega, L. M. Varela, Y. M. Pacheco, R. Abia, & F. J. G. Muriana. Oleic acid in olive oil: From a metabolic framework toward a clinical perspective. Curr. Pharm. Des. 17, 831–843 (2011). https://doi.org/10.2174/138161211795428957 [CrossRef] [Google Scholar]
- A. Romani, F. Ieri, S. Urciuoli, A. Noce, G. Marrone, C. Nediani, & R. Bernini. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of olea europaea l. Nutrients, 11, (2019). https://doi.org/10.3390/nu11081776 [CrossRef] [PubMed] [Google Scholar]
- M. Bucciantini, M. Leri, P. Nardiello, F. Casamenti. & M. Stefani. Olive polyphenols: Antioxidant and anti-inflammatory properties. Antioxidants, 10, 1044 (2021). https://doi.org/10.3390/antiox10071044 [CrossRef] [PubMed] [Google Scholar]
- A. H. Stark, & Z. J. N. Madar. Olive oil as a functional food: Epidemiology and nutritional approaches. Nutrition Reviews, 60, 170–176 (2002). https://doi.org/10.1301/002966402320243250 [CrossRef] [PubMed] [Google Scholar]
- Y. Li, S. Y. Chen, H. Chen, P. Guo, T. Li, & Q. Xu. Effect of thermal oxidation on detection of adulteration at low concentrations in extra virgin olive oil: Study based on laser-induced fluorescence spectroscopy combined with KPCA-LDA. Food Chem. 309, 125669 (2020). https://doi.org/10.1016/j.foodchem.2019.125669 [CrossRef] [PubMed] [Google Scholar]
- L. S. Vieira, C. Assis, M. E. L. R. de Queiroz, A. A. Neves, & A. F. de Oliveira. Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection. Food Chem, 345, 128866 (2021). https://doi.org/10.1016/j.foodchem.2020.128866 [CrossRef] [PubMed] [Google Scholar]
- M. Vietina, C. Agrimonti, & N. Marmiroli. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: A tool for disclosure of olive oil adulteration. Food Chem. 141, 3820–3826 (2013). https://doi.org/10.1016/j.foodchem.2013.06.075 [CrossRef] [PubMed] [Google Scholar]
- O. Uncu, & B. Ozen. A comparative study of mid-infrared, UV-Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. Food Control, 105, 209–218 (2019). https://doi.org/10.1016/j.foodcont.2019.06.013 [CrossRef] [Google Scholar]
- K. A. Omwange, D. F. Al Riza, Y. Saito, T. Suzuki, Y. Ogawa, K. Shiraga, Ferruccio Giametta, N. Kondo. Potential of front face fluorescence spectroscopy and fluorescence imaging in discriminating adulterated extra-virgin olive oil with virgin olive oil. Food Control, 124, 107906 (2021). https://doi.org/10.1016/j.foodcont.2021.107906 [CrossRef] [Google Scholar]
- I. D. Meras, J. D. Manzano, D. A. Rodriguez, & A. M. de la Pena. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification. Talanta, 178, 751–762 (2018). https://doi.org/10.1016/j.talanta.2017.09.095 [CrossRef] [PubMed] [Google Scholar]
- T. K. de Lima, M. Musso, & D. Bertoldo Menezes. Using Raman spectroscopy and an exponential equation approach to detect adulteration of olive oil with rapeseed and corn oil. Food Chem, 333, 127454 (2020). https://doi.org/10.1016/j.foodchem.2020.127454 [CrossRef] [PubMed] [Google Scholar]
- X. W. Hou, G. L. Wang, X. Wang, X. M. Ge, Y. R. Fan, R. Jiang, & S. D. Nie. Rapid screening for hazelnut oil and high-oleic sunflower oil in extra virgin olive oil using low-field nuclear magnetic resonance relaxometry and machine learning. J. Sci. Food Agric. 101, 2389–2397 (2021). https://doi.org/10.1002/jsfa.10862 [CrossRef] [PubMed] [Google Scholar]
- N. Dupuy, Y. Le Dreau, D. Ollivier, J. Artaud, C. Pinatel, & Kister. Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra. J. Agric. Food Chem. 53, 9361–9368 (2005). https://doi.org/10.1021/jf051716m [CrossRef] [PubMed] [Google Scholar]
- E. Martín-Tornero, A. Fernández, J. M. Pérez-Rodriguez, I. Durán-Merás, M. H. Prieto, & D. Martín-Vertedor. Non-destructive fluorescence spectroscopy as a tool for discriminating between olive oils according to agronomic practices and for assessing quality parameters. Food Anal. Methods, 15, 253–265 (2022). https://doi.org/10.1007/s12161-021-02112-2 [CrossRef] [Google Scholar]
- K. F. Magalhaes, A. R. L. Caires, M. S. Silva, G. B. Alcantara, & S. L. Oliveira. Endogenous fluorescence of biodiesel and products thereof: Investigation of the molecules responsible for this effect. Fuel, 119, 120–128 (2014). https://doi.org/10.1016/j.fuel.2013.11.024 [CrossRef] [Google Scholar]
- M. Zandomeneghi, L. Carbonaro, & G. Zandomeneghi. Comment on: Excitationemission fluorescence spectroscopy combined with three-way methods of analysis as a complementary technique for olive oil characterization. J. Agric. Food Chem. 54, 5214–5215 (2006). https://doi.org/10.1021/jf0605648 [CrossRef] [PubMed] [Google Scholar]
- H, Ali M, Saleem MR. Anser S. Khan R. Ullah M. Bilal. Validation Of Fluorescence Spectroscopy To Detect Adulteration Of Edible Oil In Extra Virgin Olive Oil (EVOO) By Applying Chemometrics. Appl Spectrosc. 72, 1371–9 (2018). https://doi.org/10.1177/0003702818768485 [CrossRef] [PubMed] [Google Scholar]
- K. I. Poulli, G. A. Mousdis, & C. A. Georgiou. Classification of edible and lampante virgin olive oil based on synchronous fluorescence and total luminescence spectroscopy. Anal. Chim. Acta. 542, 151–156 (2005). https://doi.org/10.1016/j.aca.2005.03.061 [CrossRef] [Google Scholar]
- F. Guimet, J. Ferré, & R. Boqué. Rapid detection of olive–pomace oil adulteration in extra virgin olive oils from the protected denomination of origin “Siurana” using excitation–emission fluorescence spectroscopy and three-way methods of analysis. Anal. Chim. Acta. 544, 143–152 (2005). https://doi.org/10.1016/j.aca.2005.02.013 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.