Open Access
Issue |
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 5 | |
Section | Technological Advances in the Horticulture Sector | |
DOI | https://doi.org/10.1051/bioconf/202411001006 | |
Published online | 24 May 2024 |
- S. Velten, J. Leventon, N. Jager, & J. Newig, What is sustainable agriculture? A systematic review. Sustainability 7, 7833–7865 (2015) [CrossRef] [Google Scholar]
- O. Calicioglu, A. Flammini, S. Bracco, L. Bellù, & R. Sims, The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability 11, 222 (2019) [Google Scholar]
- N. Sharma, & R. Singhvi, Effects of chemical fertilizers and pesticides on human health and environment: a review. Int. j. agric. environ. biotechnol. 10, 675–680 (2017) [CrossRef] [Google Scholar]
- J.K. Zhu, Abiotic stress signaling and responses in plants. Cell, 167, 313–324 (2016) [CrossRef] [PubMed] [Google Scholar]
- A. Gull, A. A. Lone, & N. U. I. Wani, Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, 1-19 (2019) [Google Scholar]
- D.K. Tripathi, V.P. Singh, A. Lux, & M. Vaculik, Silicon in plant biology: from past to present, and future challenges. J. Exp. Bot. 71, 6699–6702 (2020) [CrossRef] [PubMed] [Google Scholar]
- D. Gopal, T. N. V. K. V. Prasad, T. Pradeep, C. B. R. Reddy, A. R. NirmalKumar, R. Naseeruddin, & M. V. S. Naidu, Effects of Nanoparticulate Delivery of Silicon on the Growth and Yield of Rice (Oryza sativa L.). Silicon 16, 253–263 (2024) [CrossRef] [Google Scholar]
- M. Luyckx, J. F. Hausman, S. Lutts, & G. Guerriero, Silicon and plants: current knowledge and technological perspectives. Front. Plant. Sci. 8, 256009 (2017) [CrossRef] [Google Scholar]
- D.K. Tripathi, P. Rai, G. Guerriero, S. Sharma, F. J. Corpas, & V. P. Singh, Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid. J. Exp. Bot. 72, 4457–4471 (2021) [CrossRef] [PubMed] [Google Scholar]
- J. J. Rios, M. C. Martínez-Ballesta, J. M. Ruiz, B. Blasco, & M. Carvajal, Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front. Plant. Sci. 8, 254076 (2017) [Google Scholar]
- M. U. P. Araújo, J. A. Rios, E. T. Silva, & F. A. Rodrigues, Silicon alleviates changes in the source-sink relationship of wheat plants infected by Pyricularia oryzae. J Phytopathol 109, 1129–1140 (2019) [CrossRef] [PubMed] [Google Scholar]
- L. Kostic, N. Nikolic, D. Bosnic, J. Samardzic, & M. Nikolic, Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419, 447–455 (2017) [CrossRef] [Google Scholar]
- I. Vega, M. Nikolic, S. Pontigo, K. Godoy, M. D. L. L. Mora, & P. Cartes, Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agron J. 9, 388 (2019) [Google Scholar]
- A. Frew, L. A. Weston, O. L. Reynolds, & G. M. Gurr, The role of silicon in plant biology: a paradigm shift in research approach. Ann. Bot. 121, 1265–1273 (2018) [CrossRef] [PubMed] [Google Scholar]
- M. Wang, L. Gao, S. Dong, Y. Sun, Q. Shen, & S. Guo, Role of silicon on plant–pathogen interactions. Front. Plant. Sci. 8, 255703 (2017) [Google Scholar]
- D. K. Tripathi, K. Vishwakarma, V. P. Singh, V. Prakash, S. Sharma, S. Muneer, ... & F. J. Corpas, Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. J. Hazard Mater. 408, 124820 (2021) [CrossRef] [Google Scholar]
- P. Langridge, Economic and academic importance of barley. The barley genome 1-10 (2018) [Google Scholar]
- I. K. Dawson, J. Russell, W. Powell, B. Steffenson, W. T. Thomas, & R. Waugh, Barley: a translational model for adaptation to climate change. New Phytol. 206, 913–931 (2015) [CrossRef] [PubMed] [Google Scholar]
- D. R. Hoagland, & D. I. Arnon, The water-culture method for growing plants without soil. Circular. Calif. Agric. 347(2nd edit) (1950) [Google Scholar]
- J. Kuhla, J. Pausch, & J. Schaller, Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. Plant Cell Environ. 44, 3336–3346 (2021) [CrossRef] [PubMed] [Google Scholar]
- S. Dresler, M. Wójcik, W. Bednarek, A. Hanaka, & A. Tukiendorf, The effect of silicon on maize growth under cadmium stress. Russ. J. Plant Physiol. 62, 86–92 (2015) [CrossRef] [Google Scholar]
- T. An, Y. Gao, Q. Kuang, Y. Wu, Q. U. Zaman, Y. Zhang, ... & Y. Chen, Effect of silicon on morpho-physiological attributes, yield and cadmium accumulation in two maize genotypes with contrasting root system size and health risk assessment. Plant Soil 477, 117–134 (2022) [CrossRef] [Google Scholar]
- A. Karmollachaab, & M. H. Gharineh, Effect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol. Iran Agric. Res. 34, 31–38 (2015) [Google Scholar]
- R. Fiala, I. Fialová, M. Vaculík, & M. Luxová, M. Effect of silicon on the young maize plants exposed to nickel stress. Plant Physiol. Biochem. 166, 645–656 (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.