Open Access
Issue |
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 10 | |
Section | Technological Advances in the Horticulture Sector | |
DOI | https://doi.org/10.1051/bioconf/202411001011 | |
Published online | 24 May 2024 |
- X.X. Wang, F. Zhao, G. Zhang, Y. Zhang, and L. Yang. Vermicompost improves Tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front Plant Sci. 8:1978 (2017). https://doi:10.3389/fpls.2017.01978 [CrossRef] [PubMed] [Google Scholar]
- V.M. Gutiérrez, and E. Evelyn. An overview of recent studies of tomato (Solanum Lycopersicum spp) from a social, biochemical and genetic perspective on quality parameters. Basic Microbiol, 50, 211–217 (2018). https://api.semanticscholar.org/CorpusID:92412905 [Google Scholar]
- C.E. Norris, and A. Katelyn. Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front. Environ. Sci. (2018) https://doi.org/10.3389/fenvs.2018.00050 [Google Scholar]
- RK. Dubey, P.K. Dubey, R. Chaurasia, H.B. Singh, and P.C. Abhilash. Sustainable agronomic practices for enhancing the soil quality and yield of Cicer arietinum L. under diverse agroecosystems. J. Environ. Manage. 262, 110284 (2020) https://api.semanticscholar.org/CorpusID:213921847 [CrossRef] [Google Scholar]
- M. Machfudz, and I. Murwani. Combined effect of vermicompost and earthworm Pontoscolex corethrurus inoculation on the yield and quality of Broccoli (Brassica oleracea L.) using organic growing media. (2017) https://repository.unisma.ac.id/handle/123456789/2245 [Google Scholar]
- M. Rahman, M. Alauddin, and A. Ali. Growth and yield performance of strawberry (Fragaria ananassa) under various doses of vermicompost and NPK fertilizers grown at rooftop of Charfasson area in the southern parts of Bangladesh. Dhaka Univ. J. Biol. Sci. 30, 283–292 (2021). https://api.semanticscholar.org/CorpusID:237752037 [CrossRef] [Google Scholar]
- S.L. Lim, T.Y. Wu, P.N. Lim, and K.P. Shak. The use of vermicompost in organic farming: overview, effects on soil and economics. J. Sci. Food Agric. 95(6), 1143–1156 (2015). https://doi.org/10.1002/jsfa.6849 [CrossRef] [Google Scholar]
- V.K. Garg, and R. Gupta. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotox. Environ. Saf. 74(1), 19–24 (2011). https://doi.org/10.1016/j.ecoenv.2010.09.015 [CrossRef] [Google Scholar]
- R.C. Choudhary, H.L. Bairwa, U. Kumar, T. Javed, M. Asad, K. Lal et al. Influence of organic manures on soil nutrient content, microbial population, yield and quality parameters of pomegranate (Punica granatum L.) cv. Bhagwa. PLoS ONE 17(4): e0266675 (2022). https://doi.org/10.1371/journal.pone.0266675 [CrossRef] [Google Scholar]
- F. Shadanpour, A.M. Torkashv, and H.G. The effect of cow manure vermicompost as the planting medium on the growth of Marigold. Ann. Biol. Res. 2, 109–115 (2011). https://api.semanticscholar.org/CorpusID:60418786 [Google Scholar]
- J. Abraham. Organic carbon estimations in soils: analytical protocols and their implications. Rubber Sci. 26, 45–54 (2013). https://api.semanticscholar.org/CorpusID:102922668 [Google Scholar]
- S.L. Lachnicht, P.F. Hendrix. Interaction of the earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in a subtropical Spodosol, Soil Biol. Biochem. 33(10), 1411–1417 (2001). https://doi.org/10.1016/S0038-0717(01)00049-9 [CrossRef] [Google Scholar]
- Z. Aslam, S. Bashir, W. Hassan, K. Bellitürk, N. Ahmad, N.K. Niazi, A. Khan, M.I. Khan, Z. Chen, and M. Maitah. Unveiling the efficiency of vermicompost derived from different Biowastes on Wheat (Triticum aestivum L.) plant growth and soil health. Agronomy 9(12):791 (2019). https://doi.org/10.3390/agronomy9120791 [CrossRef] [Google Scholar]
- D.T. Sabrina, M.M. Hanafi, A.W. Gandahi, M.T. Mohamed, and N.A. Aziz. Effect of mixed organic-inorganic fertilizer on growth and phosphorus uptake of setaria grass (Setaria splendida). Aust. J. Crop Sci. 7, 75–83 (2013). https://api.semanticscholar.org/CorpusID:32999260 [Google Scholar]
- R. Azarmi, M.T. Giglou, and R.D. Taleshmikail Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr J. Biotechnol. 7, 2397–2401 (2008). https://api.semanticscholar.org/CorpusID:55359490 [Google Scholar]
- Z. Aslam, A. Ahmad, K. Bellitürk, H. Kanwal, M. Asif, and E. Ullah. Integrated use of simple compost, vermicompost, vermi-tea and chemical fertilizers NP on the morpho-physiological, yield and yield related traits of tomato (Solanum lycopersicum L.). J. Innov. Sci. 9(1): 1–12 (2023). https://dx.doi.org/10.17582/journal.jis/2023/9.1.1.12 [Google Scholar]
- N.Q. Arancon, A. Pant, T. Radovich, N.V. Hue, J.K. Potter, and C.E. Converse. Seed germination and seedling growth of tomato and lettuce as affected by vermicompost water extracts (Teas). HortScience 47(12), 1722–1728 (2012). https://doi.org/10.21273/HORTSCI.47.12.1722 [CrossRef] [Google Scholar]
- R. Joshi, J. Singh. and A.P. Vig. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. 14, 137–159 (2015). https://doi.org/10.1007/s11157-014-9347-1 [CrossRef] [Google Scholar]
- A. Pant, T.J. Radovich, N.V. Hue, S.T. Talcott, and K.A. Krenek. Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical fertiliser. J Sci. Food Agric. 89, 2383–2392 (2009). https://api.semanticscholar.org/CorpusID:35012999 [CrossRef] [Google Scholar]
- R. Ali, S. Yadav, P. Srivastav, R. Kumar, M. Ahmad, and G. Krishna. Effect of Bio-fertilizers and Farm Yard Manure in Production of Tomato : A Review. Biological Forum – An International Journal (BFIJ), 14(4), 828–832 (2022). [Google Scholar]
- A. Sharma, R. Kumar, N. Kumar, K. Kaur, V. Saxena, and P. Ghosh. Chemometrics driven portable Vis-SWNIR spectrophotometer for non-destructive quality evaluation of raw tomatoes. Chemom. Intell. Lab. Syst. 242, 105001 (2023), https://doi.org/10.1016/j.chemolab.2023.105001. [CrossRef] [Google Scholar]
- V. Velikova, I. Yordanov, and A. Edreva. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000). https://doi.org/10.1016/S0168-9452(99)00197-1 [CrossRef] [Google Scholar]
- G.S. Rekha, P.K. Kaleena, D. Elumalai, M.P. Srikumaran, and V.N. Maheswari. Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. Int. J. Recycl. Org. Waste Agric. 7, 83–88 (2018). https://api.semanticscholar.org/CorpusID:90585715 [CrossRef] [Google Scholar]
- A. Esringü, M. Turan, S. Sushkova, T. Minkina, V.D. Rajput, A. Glinushkin, and V. Kalinitchenko. Influence of Vermicompost Application on the Growth of Vinca rosea valiant, Pelargonium peltatum L. and Pegasus patio rose. Horticulturae 8(6):534 (2022). https://doi.org/10.3390/horticulturae8060534 [CrossRef] [Google Scholar]
- Md. Kamal, and A.H. Mostafa. Efficacy of different combinations of nitrogenous fertilizer and vermicompost on yield and quality of aromatic rice. Sher-e-Bangla Agricultural University Dhaka, Bangladesh : Department of Agronomy (2020) http://archive.saulibrary.edu.bd:8080/xmlui/handle/123456789/4551 [Google Scholar]
- F.P. Karagöz, A. Dursun, N. Tekiner, R. Kul, R. Kotan. Efficacy of vermicompost and/or plant growth promoting bacteria on the plant growth and development in Gladiolus. Ornam. Hortic. Rev. Bra. 25(2), 180–188 (2019). http://doi.org/10.14295/oh.v25i2.2023 [CrossRef] [Google Scholar]
- Z. Aslam, A. Ahmad, K. Bellitürk, N. Iqbal, M. Idrees, W.U. Rehman, G. Akbar, M. Tariq, M. Raza, and S. Riasat. Effects of vermicompost, vermi-tea and chemical fertilizer on morpho-physiological characteristics of tomato (Solanum lycopersicum) in Suleymanpasa District, Tekirdag of Turkey. Pure Appl. Biol, 9, 1920–1931 (2020). [Google Scholar]
- F. Gao, H. Li, X. Mu, H. Gao, Y. Zhang, R. Li, K. Cao, and L. Ye. Effects of organic fertilizer application on tomato yield and quality: a metaanalysis. Appl. Sci. 13, 2184 (2023). https://doi.org/10.3390/app13042184 [CrossRef] [Google Scholar]
- F. Meng, Y. Li, S. Li, H. Chen, Z. Shao, Y. Jian, Y. Mao, L. Liu, Q. Wang. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork. Trends Food Sci. Technol. 124, 296–308 (2022). https://doi.org/10.1016/j.tifs.2022.04.023 [CrossRef] [Google Scholar]
- L. Lu, Y. Han, J. Wang, J. Xu, Y. Li, M. Sun, F. Zhao, C. He, Y. Sun, Y. Wang et al. PBAT/PLA humic acid biodegradable film applied on solar greenhouse tomato plants increased lycopene and decreased total acid contents, Sci. Total Environ. 871, 162077 (2023), https://doi.org/10.1016/j.scitotenv.2023.162077. [CrossRef] [Google Scholar]
- S. Tyagi, S.P. Singh, and S.K. Upadhyay. Role of superoxide dismutases (SODs) in Stress tolerance in plants. Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0690-1_3 [CrossRef] [Google Scholar]
- C. Kumar, S.B. Verma, and A.K. Singh. Sustainable management of soil salinity with special reference to smart fertigation systems. Proc. Natl. Acad. Sci. India B Biol. Sci. 1-14. (2023). https://doi.org/10.1007/s40011-023-01522-y [Google Scholar]
- E. Motamedi, M. Safari, and M. Salimi. Improvement of tomato yield and quality using slow release NPK fertilizers prepared by carnauba wax emulsion, starch-based latex and hydrogel nanocomposite combination. Sci Rep 13, 11118 (2023). https://doi.org/10.1038/s41598-023-38445-7 [CrossRef] [PubMed] [Google Scholar]
- S.B. Verma, C. Kumar, and R.P. Narayan. Sustaining soil health and tomato production through organic inputs and bacterial inoculations in alluvial soils detoxifying plant contaminant. S. Afr. J. Bot. 161 404–417 (2023). https://doi.org/10.1016/j.sajb.2023.08.017 [CrossRef] [Google Scholar]
- Z. Yusof, S. Ramasamy, N.Z. Mahmood, and J.S. Yaacob. Vermicompost supplementation Improves the Stability of Bioactive Anthocyanin and Phenolic Compounds in Clinacanthus nutans Lindau. Molecules 23(6):1345 (2018). https://doi:10.3390/molecules23061345 [CrossRef] [PubMed] [Google Scholar]
- F. Huang, C. Mo, L. Li, J. Shi, Y. Yang, and X. Liao. Organic fertilizer application mediates tomato defense against Pseudomonas syringae pv. tomato, possibly by reshaping the soil microbiome. Front. Microbiol. 13:939911 (2022). https://doi:10.3389/fmicb.2022.939911 [CrossRef] [Google Scholar]
- T.S. Alah, A. Jahromi, A. Zakerin, A. Ejraei, and H.H. Khankahdani. Nutrient uptake, fruit quality, and yield of greenhouse tomato (Solanum lycopersicum, cv. Hirad) as influenced by the interaction of nitrogen and potassium. Int. J. Hortic. Sci. Technol. 11(4), 523–532 (2024). https://doi:10.22059/ijhst.2024.362151.666 [Google Scholar]
- V. Paul, S. Dhiman, and Y.P. Dubey. Effect of vermicompost and P enriched biocompost on soil properties under french bean crop. Int. J. Curr. Microbiol. Appl. Sci, 7, 2170–2177 (2018). https://doi.org/10.20546/ijcmas.2018.709.267 [CrossRef] [Google Scholar]
- I. Oyege, and M.S.B. Bhaskar. Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Syst. 7, 101 (2023). https://doi.org/10.3390/soilsystems7040101 [CrossRef] [Google Scholar]
- M. Qasim, J. Ju, H. Zhao, S.M. Bhatti, G. Saleem, S.P. Memon, S. Ali, M.U. Younas, N. Rajput, and Z.H. Jamali. Morphological and physiological response of tomato to sole and combined application of vermicompost and chemical fertilizers. Agronomy, 13, 1508 (2023). https://doi.org/10.3390/agronomy13061508 [CrossRef] [Google Scholar]
- V. Yadav, T. Karak, S. Singh, A.K. Singh, and P. Khare. Benefits of biochar over other organic amendments: responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind. Crops Prod, 131, 96–105 (2019). https://doi.org/10.1016/j.indcrop.2019.01.045 [CrossRef] [Google Scholar]
- A. Raksun, M.L. Ilhamdi, I.W. Merta, and I.G. Mertha. Analysis of bean (Phaseolus vulgaris) growth due to treatment of vermicompost and different types of mulch. J. Biol. Trop. 22, 907–913. (2022) https://doi.org/10.29303/jbt.v22i3.4056 [Google Scholar]
- M. Zouari, N. Elloumi, C.B. Ahmed, D. Delmail, B.B. Rouina, F.B. Abdallah, and P. Labrousse. Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol. Eng, 86, 202–209 (2016). https://doi.org/10.1016/j.ecoleng.2015.11.016 [CrossRef] [Google Scholar]
- S. Verma, A. Sharma, R. Kumar, C. Kaur, A. Arora, R. Shah, and L. Nain. Improvement of antioxidant and defense properties of tomato (var. Pusa Rohini) by application of bioaugmented compost. Saudi J Biol Sci. 22(3): 256–264 (2015). https://doi:10.1016/j.sjbs.2014.11.003 [CrossRef] [PubMed] [Google Scholar]
- A. Romdhane, A. Riahi, A. Ujj, F. Ramos-Diaz, J. Marjanović, and C. Hdider. Comparative nutrient and antioxidant profile of high lycopene variety with hp genes and ordinary variety of tomato under organic conditions. Agronomy 13, 649 (2023). https://doi.org/10.3390/agronomy13030649 [CrossRef] [Google Scholar]
- S.O. Mahmoud, and D.A.M. Gad. Effect of vermicompost as fertilizer on growth, yield and quality of bean plants (Phaseolus vulgaris L.). Middle East J. Agric. Res, 9, 220–226 (2020). https://doi.org/10.36632/mejar%2F2020.9.1.19 [Google Scholar]
- E. Khosropour, W. Weisany, N.A. Tahir, L. Hakimi. Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. Environ. Sci. Pollut. Res, 29, 17476–17486 (2022). https://doi.org/10.1007/s11356-021-17073-6 [CrossRef] [PubMed] [Google Scholar]
- H. Emami, and A.R. Astaraei. Effect of organic and inorganic amendments on parameters of water retention curve, bulk density and aggregate diameter of a saline-sodic soil. J. Agric. Sci. Technol, 14, 1625–1636 (2012). https://api.semanticscholar.org/CorpusID:54715219 [Google Scholar]
- A. Nasrin, S. Khanom, S.A. Hossain. Effects of vermicompost and compost on soil properties and growth and yield of kalmi (Ipomoea Aquatica Forsk.) in mixed soil. Dhaka Univ. J. Biol. Sci, 28, 121–129 (2019). https://doi.org/10.3329/dujbs.v28i1.46498 [CrossRef] [Google Scholar]
- A.A. Olowoake, A.A. Wahab, O.O. Lawal, S.K. Subair. Assessing the potential of organic wastes through vermicomposting: a case study with cucumber (Cucumis sativus). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 92, 131–140 (2022). https://doi.org/10.1007/s40011-021-01321-3 [CrossRef] [Google Scholar]
- S. Nithya, O.S. Sethuraman, and K. Sasikumar. Effect of vermicompost and organic fertilizer on improved growth, productivity and quality of tomato (Solanum lycopersicum) plant. Indian J. Sci. Technol. 17(2): 142–148 (2024). https://doi.org/10.17485/IJST/v17i2.1821 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.