Open Access
Issue |
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 7 | |
Section | Advances in Post-Harvest Management | |
DOI | https://doi.org/10.1051/bioconf/202411002009 | |
Published online | 24 May 2024 |
- Z. Wang, Y. Sui, J. Li, X. Tian, Q. Wang. Biological control of postharvest fungal decays in citrus: a review. Crit Rev Food Sci Nutr, 62(4), 861–870 (2022). DOI:10.1080/10408398.2020.1829542 [CrossRef] [PubMed] [Google Scholar]
- M. S. Ladaniya. Citrus Fruit: Biology, Technology and Evaluation. London, UK: Elsevier Inc. (2008). [Google Scholar]
- A. R. Ballester, M. T. Lafuente, L. González-Candelas, Spatial study of antioxidant enzymes, peroxidase, and phenylalanine ammonia-lyase in the citrus fruit–Penicillium digitatum interaction, Postharvest Biol Technol, 39(2), 115–124 (2006). DOI: 10.1016/j.postharvbio.2005.10.002 [CrossRef] [Google Scholar]
- L. Poppe, S. Vanhoutte, M. Höfte. Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. Eur. J. Plant Pathol., 109, 963–973 (2003). DOI:10.1023/B:EJPP.0000003747.41051.9f [CrossRef] [Google Scholar]
- N.G. Ghooshkhaneh, M.R. Golzarian, M. Mamarabadi. Detection and classification of citrus green mold caused by Penicillium digitatum using multispectral imaging. J. Sci. Food Agric., 98 (9), 3542–3550 (2018). DOI: 10.1002/jsfa.8865 [CrossRef] [PubMed] [Google Scholar]
- D. Macarisin, L. Cohen, A. Eick, G. Rafael, E. Belausov, M. Wisniewski, S. Droby. Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology, 97, 1491–1500 (2007). DOI: 10.1094/PHYTO-97-11-1491 [CrossRef] [PubMed] [Google Scholar]
- P. Tripathi & N. Dubey. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol, 32, 235–245 (2003). DOI: 10.1016/j.postharvbio.2003.11.005 [Google Scholar]
- W. Hao, H. Li, M. Hu, L. Yang, M. Rizwan-ul-Haq. Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin, Postharvest Biology and Technology, 59 (3), 316–323 (2011), ISSN 0925-5214, DOI:10.1016/j.postharvbio.2010.10.002 [CrossRef] [Google Scholar]
- W. du Plooy, T. Regnier, S. Combrinck. Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biol Technol, 53(3), 117–122 (2009). DOI: 10.1016/j.postharvbio.2009.04.005 [CrossRef] [Google Scholar]
- T. Regnier, W. du Plooy, S. Combrinck, B. Botha. Fungitoxicity of Lippia scaberrima essential oil and selected terpenoid components on two mango postharvest spoilage pathogens. Postharvest Biol Technol, 48, 254–258 (2008). DOI: 10.1016/j.postharvbio.2007.10.011 [CrossRef] [Google Scholar]
- S. S. Mahmoud, R. B. Croteau. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci, 7(8), 366–373 (2002). DOI: 10.1016/S1360-1385(02)02303-8 [CrossRef] [PubMed] [Google Scholar]
- S. Burt. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol, 94(3), 223–253 (2004). DOI: 10.1016/j.ijfoodmicro.2004.03.022 [CrossRef] [PubMed] [Google Scholar]
- M. Hyldgaard, T. Mygind, R. L. Meyer. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 1–24 (2012). DOI: 10.3389/fmicb.2012.00012 [PubMed] [Google Scholar]
- I. Camele, V. De Feo, L. Altieri, E. Mancini, L. De Martino, G. Lu-iqi Rana. An attempt of post-harvest orange fruit rot control using essential oils from Mediterranean plants. J Med Food, 13, 1515–1523 (2010). DOI: 10.1089/jmf.2009.0285 [CrossRef] [PubMed] [Google Scholar]
- F. Reyes-Jurado, A. R. Navarro-Cruz, C. E. Ochoa-Velasco, E. Palou, A. Lopez-Malo, R. Avila-Sosa. Essential oils in vapor phase as alternative antimicrobials: Crit Rev Food Sci Nutr, 60(10), 1641–1650 (2020). DOI: 10.1080/10408398.2019.1586641 [CrossRef] [PubMed] [Google Scholar]
- A. Servili, E. Feliziani, G. Romanazzi. Exposure to volatiles of essential oils alone or under hypobaric treatment to control postharvest gray mold of table grapes. Postharvest Biol Technol, 133, 36–40 (2017). DOI: 10.1016/j.postharvbio.2017.06.007 [CrossRef] [Google Scholar]
- A. Al-Jaradi, I. Al-Mahmooli, R. Janke, S. Maharachchikumbura, N. Al-Saady, and A. M Al-Sadi. Isolation and identification of pathogenic fungi and oomycetes associated with beans and cowpea root diseases in Oman. PeerJ, 6:e6064. (2018). DOI: 10.7717/peerj.6064 [CrossRef] [PubMed] [Google Scholar]
- K. K Nakasone, S. W Peterson, S. C Jong. Preservation and distribution of fungal cultures. Biodiversity of Fungi: Inventory and Monitoring Methods (Bills G. Muller G.M. Foster M.S., eds), 37–47. Elsevier, Amsterdam (2004). [CrossRef] [Google Scholar]
- A. Vitoratos, D. Bilalis, A. Karkanis, & A. Efthimiadou. Antifungal Activity of Plant Essential Oils Against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not Bot Horti Agrobo, 41(1), 86–92 (2013). DOI: 10.15835/nbha4118931 [CrossRef] [Google Scholar]
- S. A. M. Alamri, M. Hashem, M. S. A. Alqahtani, A. M. A. Alshehri, Z. A. Mohamed, & E. S. H. Ziedan. Formulation of mint and thyme essential oils with Arabic gum and Tween to enhance their efficiency in the control of postharvest rots of peach fruit. Can J Plant Pathol, 42(3), 330–343 (2020). DOI: 10.1080/07060661.2019.1686654 [CrossRef] [Google Scholar]
- J. Singh, N. Tripathi, Inhibition of storage fungi of blackgram (Vigna mungo L.) by some essential oils. Flavour and Fragrance Journal, 14, 1–4 (1999). DOI:10.1002/(SICI)10991026(199901/02)14:1<1::AID-FFJ735>3.0.CO;2-R [CrossRef] [Google Scholar]
- N. Poovathumkadavil Thambi, P. Rani, M. Sharma, M. Katoch. A combinatorial approach of Monarda citriodora essential oil (MEO) and linalool vapors to control fruit rot of Citrus limon caused by a new pathogen, Aspergillus foetidus, and its underlying mode of action. J Appl Microbiol, 134(12) (2023). DOI: 10.1093/jambio/lxad292 [Google Scholar]
- M. B Allagui, M. Moumni, G. Romanazzi. Antifungal Activity of Thirty Essential Oils to Control Pathogenic Fungi of Postharvest Decay. Antibiotics, 13, 28 (2024). DOI: 10.3390/antibiotics13010028 [Google Scholar]
- M. Marin, M. Novakovic, V. Tesevic, et al. (2012). Antioxidative, antibacterial and antifungal activity of the essential oil of wild-growing Satureja montana L. from Dalmatia, Croatia. Flavour Fragr J, 27, 216–23 (2012). DOI: 10.1002/ffj.3082 [CrossRef] [Google Scholar]
- M. Milos, A. Radonic, N. Bezic, V. Dunkic. Localities and seasonal variations in the chemical composition of essential oils of Satureja montana L. and S. cuneifolia Ten. Flavour Fragr J, 16, 157–160 (2001). DOI: 10.1002/ffj.965 [CrossRef] [Google Scholar]
- H. S Elshafie, E. Mancini, S. Sakr, L. De Martino, C. A. Mattia, V. De Feo, et al. Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit. J Medicinal Food, 18(8), 929–934 (2015). DOI: 10.1089/jmf.2014.0167 [Google Scholar]
- L. Pinto, M. A. Bonifacio, E. De Giglio, S. Cometa, A. F. Logrieco, F. Baruzzi. Unravelling the antifungal effect of red thyme oil (Thymus vulgaris L.) compounds in vapor phase. Molecules, 25, 1–16 (2020). DOI: 10.3390/molecules25204761 [Google Scholar]
- F. Buonsenso, G. Schiavon, D. Spadaro. Efficacy and mechanisms of action of essential oils’ vapours against blue mould on apples caused by Penicillium expansum. Int J Mol Sci, 24(3), 2900 (2023). DOI: 10.3390/ijms24032900 [CrossRef] [PubMed] [Google Scholar]
- M. Kara, M. Türkmen, S. Soylu. Chemical compositions and in vitro antifungal activities of essential oils obtained from different Origanum species against postharvest gray mold rot of persimmon fruit. Acta Hortic, 1338, 283–290 (2022). DOI: 10.17660/ActaHortic.2022.1338.41 [CrossRef] [Google Scholar]
- A. Ultee, E. P. W. Kets, E. J. Smid. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 65, 4606–4610 (1999). [CrossRef] [PubMed] [Google Scholar]
- A. Ultee, M. H. J. Bennik, R. Moezelaar. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 68, 1561–1568 (2002). DOI:10.1128/AEM.68.4.1561-1568.2002 [CrossRef] [PubMed] [Google Scholar]
- R. J. W. Lambert, P. N. Skandamis, P. J. Coote, G. J. E. Nychas. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol, 91, 453–462 (2001). DOI: 10.1046/j.1365-2672.2001.01428.x [CrossRef] [PubMed] [Google Scholar]
- F. J. Perina, D. C Amaral, R. S. Fernandes, C. R. G. Labory, G. A. Teixeira, E. Alves. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest Manag Sci, 71, 1371–1378 (2015). DOI: 10.1002/ps.3933 [CrossRef] [PubMed] [Google Scholar]
- G. Fichi, G. Flamini, F. Giovanelli, D. Otranto, and S. Perrucci, “Efficacy of an essential oil of Eugenia caryophyllata against Psoroptes cuniculi,” Exp Parasitol, 115(2), 168–172 (2007). DOI: 10.1016/j.exppara.2006.07.005 [CrossRef] [PubMed] [Google Scholar]
- M. A. Abdulazeez, I. Sani, D. J. Bolanle, and S. A. Abdulmalik. Essential Oils in Food Preservation, Flavor and Safety: Black Pepper (Piper nigrum L.) Oil. Academic Press Elsevier, Cambridge, MA, USA, 277–285 (2016). DOI:10.1016/b978-0-12-416641-7.00031-6 [Google Scholar]
- M. Sayeed Akthar, G. Birhanu, and S. Demisse, Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens, Asian Pac J Trop Dis, 4(2), 911–919 (2014). DOI: 10.1016/S2222-1808(14)60757-X [Google Scholar]
- L. Muñoz Castellanos, N. Amaya Olivas, J. Ayala-Soto, C. M. De La O Contreras, M. Zermeño Ortega, F. Sandoval Salas, L. Hernández-Ochoa. ‘In Vitro and In Vivo Antifungal Activity of Clove (Eugenia caryophyllata) and Pepper (Piper nigrum L.) Essential Oils and Functional Extracts Against Fusarium oxysporum and Aspergillus niger in Tomato (Solanum lycopersicum L.). Int J Microbiol, 1702037 (2020). DOI: 10.1155/2020/1702037 [PubMed] [Google Scholar]
- J. G. Lopez-Reyes, D. Spadaro, Ml. Gullinoa, A. Garibaldia. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour Fragr J, 25, 171–177 (2010). DOI: 10.4315/0362-028X.JFP-12-34 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.