Open Access
Issue |
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 9 | |
Section | Advances in Post-Harvest Management | |
DOI | https://doi.org/10.1051/bioconf/202411002011 | |
Published online | 24 May 2024 |
- B.A.F Gomes., A. C. S. Alexandre, de Andrade, G. A. V de Andrade, A. P. Zanzini, H. E. A. de Barros, P. A. Costa, & E. V. D. B. V. Boas. Recent advances in processing and preservation of minimally processed fruits and vegetables: A review– Part 2: Physical methods and global market outlook. Food Chemistry Advances, 100304 (2023). [CrossRef] [Google Scholar]
- D. V. Schlimme, & M. L. Rooney Packaging of minimally processed fruits and vegetables. In Minimally processed refrigerated fruits & vegetables (pp. 135–182). Boston, MA: Springer US (1994). [Google Scholar]
- K. Ranjitha, D. S. Rao, K. S., & Roy, T. K. Shivashankara. Integrating calcium chloride treatment with polypropylene packaging improved the shelf life and retained the quality profile of minimally processed cabbage. Food chemistry, 256, 1–10 (2018). [CrossRef] [PubMed] [Google Scholar]
- Y. X. Seow, C. R. Yeo, H. L. Chung, & H. G. Yuk. Plant essential oils as active antimicrobial agents. Critical reviews in food science and nutrition, 54(5), 625–644 (2014) [CrossRef] [PubMed] [Google Scholar]
- M. W. Siddiqui, I. Chakraborty, J. F. Ayala-Zavala, & R. S. Dhua, Advances in minimal processing of fruits and vegetables: a review (2011). [Google Scholar]
- C. O. Perera. Minimal processing of fruit and vegetables. In Handbook of food preservation (pp. 191–206). CRC Press (2020). [Google Scholar]
- A. Pasha, M. Al-Badrashiny, M. T. Diab, A. El Kholy, R. Eskander, N. Habash, & R. Roth. Madamira: A fast, comprehensive tool for morphological analysis and disambiguation of arabic. In Lrec (Vol. 14, No. 2014, pp. 1094–1101) (2014). [Google Scholar]
- V. Bansal, M. W. Siddiqui, & M. S. Rahman. Minimally processed foods: Overview. Minimally processed foods: Technologies for safety, quality, and convenience, 1–15 (2014). [Google Scholar]
- M. I. Gil, E. Aguayo, A. A. Kader. Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. Journal of Agricultural and Food chemistry, 54(12), 4284–4296 (2006). [CrossRef] [PubMed] [Google Scholar]
- R. M. Raybaudi-Massilia, M. A. Rojas-Graü, J. Mosqueda-Melgar, & O. Martín-Belloso. Comparative study on essential oils incorporated into an alginate-based edible coating to assure the safety and quality of fresh-cut Fuji apples. Journal of Food Protection, 71(6), 1150–1161 (2008). [CrossRef] [PubMed] [Google Scholar]
- U. De Corato. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6), 940–975 (2020). [CrossRef] [PubMed] [Google Scholar]
- D. Lin, & Y. Zhao. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive reviews in food science and food safety, 6(3), 60–75 (2007). [CrossRef] [Google Scholar]
- T. Anukiruthika, P. Sethupathy, A. Wilson, K. Kashampur, J. A. Moses, & C. Anandharamakrishnan. Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156–1186 (2020). [CrossRef] [PubMed] [Google Scholar]
- L. Ma, M. Zhang, B. Bhandari, & Z. Gao. Recent developments in novel shelf-life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23–38 (2017). [CrossRef] [Google Scholar]
- V. Bancal, & R. C. Ray. Overview of food loss and waste in fruits and vegetables: From issue to resources. In Fruits and vegetable wastes: Valorization to bioproducts and platform chemicals (pp. 3–29). Singapore: Springer Nature Singapore (2022). [Google Scholar]
- E. Ray, S. Gonzalez, C. Ghidelli, C. C. Sheth, M. Mateos, L. Palou, & M. B. Pérez-Gago. Browning inhibition and microbial control in fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) by apple pectin-based edible coatings. Postharvest Biology and Technology, 112, 186–193 (2016). [CrossRef] [Google Scholar]
- R. K. Dhall. Advances in edible coatings for fresh fruits and vegetables: a review. Critical reviews in food science and nutrition, 53(5), 435–450 (2013). [CrossRef] [PubMed] [Google Scholar]
- G. Oms-Oliu, M. A. Rojas-Graü, L. A. González, P. Varela, R. Soliva-Fortuny, M. I. H. Hernando, ... & O. Martín-Belloso. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest biology and technology, 57(3), 139–148 (2010). [CrossRef] [Google Scholar]
- A. Prakash, R. Baskaran, N. Paramasivam, & V. Vadivel. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 111, 509–523 (2018). [CrossRef] [Google Scholar]
- L. Siroli, F. Patrignani, D. I. Serrazanetti, F. Gardini, & R. Lanciotti. Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science & Technology, 46(2), 302–310 (2015). [CrossRef] [Google Scholar]
- A. Conesa, B. E. Verlinden, F. ArtésHernández, B. Nicolaï, & F. Artés. Respiration rates of fresh-cut bell peppers under supertamospheric and low oxygen with or without high carbon dioxide. Postharvest Biology and Technology, 45(1), 81–88 (2007) [CrossRef] [Google Scholar]
- I. R. Singh, & A. K. Pulikkal. Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OpenNano, 8, 100066 (2022). [CrossRef] [Google Scholar]
- L. R. Ramos da Silva, O. O. Ferreira, J. N. Cruz, C. de Jesus Pereira Franco, T. Oliveira dos Anjos, M. M. Cascaes, ... & M. Santana de Oliveira. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evidence-Based Complementary and Alternative Medicine, 2021 (2021). [Google Scholar]
- F. Donsì, & G. Ferrari. Essential oil nanoemulsions as antimicrobial agents in food. Journal of biotechnology, 233, 106–120 (2016) [CrossRef] [PubMed] [Google Scholar]
- R. Pathania, R., Kaushik, & M. A. Khan. Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal, 6(3), 626–643 (2018) [CrossRef] [Google Scholar]
- D. M. F. Amaral, & K. Bhargava. Essential oil nanoemulsions and food applications. Adv Food Technol Nutr Sci Open J, 1(4), 84–87 (2015). [Google Scholar]
- K. S. Landry, S. Micheli, D. J. McClements, & L. McLandsborough. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157: H7 on contaminated broccoli and radish seeds. Food microbiology, 51, 10–17 (2015). [CrossRef] [PubMed] [Google Scholar]
- J. G. de Oliveira Filho, B. R. Albiero, L. Cipriano, C. C. de Oliveira Nobre Bezerra, F. C. A. Oldoni, M. B. Egea, ... & M. D. Ferreira. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: A new functional material for food packaging applications. Cellulose, 28(10), 6499–6511 (2021). [CrossRef] [Google Scholar]
- A. Pirozzi, V. Del Grosso, G. Ferrari, & F. Donsì. Edible coatings containing oregano essential oil nanoemulsion for improving postharvest quality and shelf life of tomatoes. Foods, 9(11), 1605 (2020) [CrossRef] [PubMed] [Google Scholar]
- X. Song, L. Wang, L. Liu, J. Li, & X. Wu. Impact of tea tree essential oil and citric acid/choline chloride on physical, structural and antibacterial properties of chitosan-based films. Food Control, 141, 109186 (2022). [CrossRef] [Google Scholar]
- Y. Chu, C. Gao, X. Liu, N. Zhang, T. Xu, X. Feng, ... & X. Tang. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. Lwt, 122, 109054 (2020). [CrossRef] [Google Scholar]
- I. H. Kim, H. Lee, J. E. Kim, K. B. Song, Y. S. Lee, D. S. Chung, & S. C. Min, Plum coatings of lemongrass oil‐incorporating carnauba wax‐based nanoemulsion. Journal of food science, 78(10), E1551–E1559 (2013). [PubMed] [Google Scholar]
- L. Salvia-Trujillo, M. A. Rojas-Graü, R. Soliva-Fortuny, & O. Martín-Belloso. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8–16 (2015). [CrossRef] [Google Scholar]
- M. Sessa, G. Ferrari, & F. Donsi. Novel edible coating containing essential oil nanoemulsions to prolong the shelf life of vegetable products. Chemical Engineering Transactions, 43, 55–60 (2015). [Google Scholar]
- A. Prakash, R. Baskaran, & V. Vadivel. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. Lwt, 118, 108851 (2020). [CrossRef] [Google Scholar]
- I. H. Kim, Y. A. Oh, H. Lee, K. B. Song, & S. C. Min. Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT-Food Science and Technology, 58(1), 1–10 (2014) [CrossRef] [Google Scholar]
- R. Severino, G. Ferrari, K. D. Vu, F. Donsì, S. Salmieri, & M. Lacroix. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food control, 50, 215–222 (2015) [CrossRef] [Google Scholar]
- D. Lin, & Y. Zhao. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive reviews in food science and food safety, 6(3), 60–75 (2007) [CrossRef] [Google Scholar]
- A. M. Ali, D. S. Mohamed, E. H. Shaurub, & A. M. Elsayed. Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies, 5(3), 1476–1482 (2017) [Google Scholar]
- G. F. Alves‐Silva, L. G. Santos, V. G. Martins, & W. R. Cortez‐Vega. Cassava starch films incorporated with clove essential oil and nanoclay as a strategy to increase the shelf life of strawberries. International Journal of Food Science & Technology, 57(10), 6690–6698 (2022) [CrossRef] [Google Scholar]
- V. K. Pandey, R. U. Islam, R. Shams, & A. H. Dar. A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables. Applied Food Research, 2(1), 100042 (2022) [CrossRef] [Google Scholar]
- A. Sathiyaseelan, X. Zhang, & M. H. Wang. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca Alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients, 15(6), 1319 (2023). [CrossRef] [PubMed] [Google Scholar]
- S. Kalpana, S. R. Priyadarshini, M. M. Leena, J. A. Moses, & C. Anandharamakrishnan. Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145–157 (2019) [CrossRef] [Google Scholar]
- F. Topuz, & T. Uyar. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Research International, 130, 108927 (2020). [CrossRef] [Google Scholar]
- T. G. Kawhena, U. L. Opara, & O. A. Fawole. A comparative study of antimicrobial and antioxidant activities of plant essential oils and extracts as candidate ingredients for edible coatings to control decay in ‘Wonderful’pomegranate. Molecules, 26 (11), 3367 (2021). [CrossRef] [PubMed] [Google Scholar]
- Z. A. Belay, O. J. Caleb, & U. L. Opara. Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packaging and Shelf Life, 21, 100359 (2019). [CrossRef] [Google Scholar]
- M. D. Wilson, R. A. Stanley, A. Eyles, & T. Ross Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Critical reviews in food science and nutrition, 59(3), 411–422 (2019) [CrossRef] [PubMed] [Google Scholar]
- O. J. Caleb, U. L. Opara, P. V. Mahajan, M. Manley, L. Mokwena, & A. G. Tredoux. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs.‘Acco’and ‘Herskawitz’). Postharvest Biology and Technology, 79, 54–61 (2013) [CrossRef] [Google Scholar]
- S. Mangaraj, T. K. Goswami, & P. V. Mahajan. Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Engineering Reviews, 1, 133–158 (2009) [CrossRef] [Google Scholar]
- L. Lu, W. Zheng, Z. Lv, & Y. Tang. Development and application of time– temperature indicators used on food during the cold chain logistics. Packaging Technology and Science, 26, 80–90 (2013) [CrossRef] [Google Scholar]
- P. Shao, L. Liu, J. Yu, Y. Lin, H. Gao, H. Cheng, & P. Sun. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends in Food Science & Technology, 118, 285–296 (2021) [CrossRef] [Google Scholar]
- U. Joshi, T. S. Bisht, & L. R. A. Mamgain. Smart packaging: Modern way for reducing post-harvest losses of horticultural produce. International Journal of Agricultural Sciences, 17, 297–305 (2021) [CrossRef] [Google Scholar]
- B. Kuswandi. Active and intelligent packaging, safety, and quality controls. Fresh-cut fruits and vegetables, 243–294 (2020) [CrossRef] [Google Scholar]
- R. Jedermann, M. Nicometo, I. Uysal, & W. Lang. Reducing food losses by intelligent food logistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130302 (2014). [CrossRef] [PubMed] [Google Scholar]
- X. Meng, S. Kim, P. Puligundla, & S. Ko. Carbon dioxide and oxygen gas sensorspossible application for monitoring quality, freshness, and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation. Journal of the Korean Society for Applied Biological Chemistry, 57, 723–733 (2014) [CrossRef] [Google Scholar]
- N. Joshi, G. Pransu, & C. Adam ConteJunior. Critical review and recent advances of 2D materials-Based gas sensors for food spoilage detection. Critical Reviews in Food Science and Nutrition, 63(30), 10536–10559 (2023). [CrossRef] [PubMed] [Google Scholar]
- X. Meng, S. Kim, P. Puligundla, & S. Ko. Carbon dioxide and oxygen gas sensorspossible application for monitoring quality, freshness, and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation. Journal of the Korean Society for Applied Biological Chemistry, 57, 723–733 (2014) [CrossRef] [Google Scholar]
- R. Dobrucka, & R. Cierpiszewski. Active and intelligent packaging food-Research and development-A Review. Polish Journal of Food and Nutrition Sciences, 64(1) (2014). [Google Scholar]
- S. Kaur, & D. Puri. Active and intelligent packaging: A boon to food packaging. Int J Food Sci Nutr, 2(4), 15–18 (2017). [Google Scholar]
- J. P. Kerry, M. N. O’grady, & S. A. Hogan. Past, current and potential utilisation of active and intelligent packaging systems for meat and musclebased products: A review. Meat science, 74(1), 113–130 (2006). [CrossRef] [PubMed] [Google Scholar]
- K. L. Yam. Intelligent packaging to enhance food safety and quality. In Emerging food packaging technologies (pp. 137–152). Woodhead Publishing (2012). [Google Scholar]
- S. Priyanka, S. K. R. Namasivayam, R. A., & John, A. Bharani. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. Chemosphere, 139240 (2023). [CrossRef] [PubMed] [Google Scholar]
- A. Nura. Advances in food packaging technology-a review. Journal of Postharvest Technology, 6(4), 55–64. [Google Scholar]
- Kuswandi, B. (2018). INTELLIGENT PACKAGING APPLICATIONS FOR FRUITS AND VEGETABLES. Innovative Packaging of Fruits and Vegetables: Strategies for Safety and Quality Maintenance, 81 (2018). [Google Scholar]
- A. Galati, A. Tulone, P. Moavero, & M. Crescimanno. Consumer interest in information regarding novel food technologies in Italy: The case of irradiated foods. Food research international, 119, 291–296 (2019). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.