Open Access
Issue
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
Article Number 04001
Number of page(s) 7
Section Horti-Entrepreneurship Success Stories
DOI https://doi.org/10.1051/bioconf/202411004001
Published online 24 May 2024
  • E. Fukase, W. Martin, Economic growth, convergence, and world food demand and supply. World Dev. 132, 104954 (2020). doi:10.1016/j.worlddev. [CrossRef] [Google Scholar]
  • K. Pawlak, M. Kołodziejczak, The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. Sustainability. 12, 5488 (2020). doi: 10.3390/su12135488. [CrossRef] [Google Scholar]
  • MB. Cole, MA. Augustin, MJ. Robertson, JM. Manners, The science of food security. NPJ Sci Food. 2, 1–8 (2018). doi:10.1038/s41538-018-0021-9. [Google Scholar]
  • R. Sharma, S.S. Kamble, A. Gunasekaran, V. Kumar, A. Kumar, A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 119, 104926 (2020). doi: 10.1016/j.cor.(2020).104926 [CrossRef] [Google Scholar]
  • J. Lundqvist, C. De Fraiture, D. Molden, Saving water: from field to fork – curbing losses and wastage in the food chain. Stockholm: SIWI policy brief, the Stockholm International Water Institute (SIWI) (2008) [Google Scholar]
  • H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulimin, Food security: the challenge of feeding 9 billion people. Science. 327, 812–818 (2010) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • P.C. West, J.S. Gerber, P.M. Engstrom, N.D. Mueller, K.A. Brauman, K.M. Carlson, E.S. Cassidy, M. Johnston, G.K. MacDonald, D.K. Ray, S. Siebert, Leverage points for improving food security and the environment. Science. 345, 325–327 (2014) [CrossRef] [PubMed] [Google Scholar]
  • T.W. Hertel, The challenges of sustainably feeding a growing planet. J. Food Secur. 7, 185–198 (2015) [CrossRef] [Google Scholar]
  • T.W. Reynolds, S.R. Waddington, C.L. Anderson, A. Chew, Z. True, A. Cullen, Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. J. Food Secur. 7, 795–822 (2015). [CrossRef] [Google Scholar]
  • H.R. El-Ramady, É. Domokos-Szabolcsy, N.A. Abdalla, H.S. Taha, M. Fári, Postharvest management of fruits and vegetables storage. Sustain Agricult Rev. 15, 65–152 (2015). doi: 10.1007/978-3-319-09132-7_2 [CrossRef] [Google Scholar]
  • D. Prusky, Reduction of the incidence of postharvest quality losses, and future prospects. Food Secur. 3, 463–474 (2011). doi: 10.1007/s12571-011-0147-y [CrossRef] [Google Scholar]
  • D. Kumar, P. Kalita, Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods. 6, 8 (2017). doi: 10.3390/foods6010008 [CrossRef] [PubMed] [Google Scholar]
  • B. Minten, S. Tamru, T. Reardon, Post-harvest losses in rural-urban value chains: evidence from Ethiopia. Food Policy. 98, 101860 (2021). doi: 10.1016/j.foodpol.2020.101860 [CrossRef] [Google Scholar]
  • P. Saima, I. Bushra, K. Humaira, S. Shazia, AM. Ali, Value addition: a tool to minimize the post-harvest losses in horticultural crops. Greener J Agric Sci. 4, 195–198 (2014). doi: 10.15580/GJAS.2014.5.042914208 [CrossRef] [Google Scholar]
  • G. Hailu, B. Derbew, Extent, causes and reduction strategies of postharvest losses of fresh fruits and vegetables–a review. J Biol Agric Healthcare. 5, 49–64 (2015). [Google Scholar]
  • A. Singh, G. Vaidya, V. Jagota, D.A. Darko, R.K. Agarwal, S. Debnath, et al, Recent advancement in postharvest loss mitigation and quality Management of Fruits and Vegetables Using Machine Learning Frameworks. J Food Qual. 26447282 (2022). doi: 10.1155/2022/6447282 [Google Scholar]
  • V. Kakani, V.H. Nguyen, BP. Kumar, H. Kim, VR. Pasupuleti, A critical review on computer vision and artificial intelligence in food industry. J Agricult Food Res. 2, 100033 (2020).doi: 10.1016/j.jafr.2020.100033 [CrossRef] [Google Scholar]
  • V. Meshram, K. Patil, V. Meshram, D. Hanchate, SD. Ramkteke, Machine learning in agriculture domain: a state-of-art survey. Artificial. Intell. Life Sci. 1, 100010 (2021). doi: 10.1016/j.ailsci.2021.100010 [Google Scholar]
  • K. Dokic, L. Blaskovic, D. Mandusic, From machine learning to deep learning in agriculture– the quantitative review of trends. In IOP conference series: Earth and environmental science (Vol. 614, p. 012138). IOP Publishing. (2020) [CrossRef] [Google Scholar]
  • P. Dorosh, H.G. Wang, L. You, E. Schmidt, Road connectivity, population, and crop production in sub-Saharan Africa. Agric. Econ. 43, 89–103 (2012) [CrossRef] [Google Scholar]
  • T. Tefera, Post-harvest losses in African maize in the face of increasing food shortage. Food Secur. 4, 267–277 (2012) [CrossRef] [Google Scholar]
  • H. Hengsdijk, W.J. de Boer, Post-harvest management and post-harvest losses of cereals in Ethiopia. Food Sec. 9, 945–958 (2017). doi: 10.1007/s12571-017-0714-y [CrossRef] [Google Scholar]
  • M.W. Rosegrant, E. Magalhaes, R.A. Valmonte-Santos, D. MasonD’Croz, Returns to investment in reducing postharvest food losses and increasing agricultural productivity growth: Post 2015 Consensus. Food Security and Nutrition Assessment Paper. Lowell: Copenhagen Consensus Center. (2015) [Google Scholar]
  • M. Focker, H.J. van Der Fels-Klerx, A.G.J.M. Oude Lansink, Systematic review of methods to determine the cost-effectiveness of monitoring plans for chemical and biological hazards in the life sciences. Compr. Rev. Food Sci Food Saf. 17, 633–645 (2018). doi:10.1111/1541-4337.1234 [CrossRef] [Google Scholar]
  • J. Loisel, S. Duret, A. Cornuéjols, D. Cagnon, M. Tardet, E. Derens-Bertheau, et al. Cold chain break detection and analysis: can machine learning help? Trends Food Sci. Technol. 112, 391–399 (2021). doi: 10.1016/j.tifs.2021.03.052 [Google Scholar]
  • N. Draha, H.I. Hsiao, J. Vlajic, M.F. Yang, H.T.V. Lin, Time-temperature abuse in the food cold chain: review of issues, challenges, and recommendations. Food Control. 89, 12–21 (2018). doi: 10.1016/j.foodcont.2018.01.027 [CrossRef] [Google Scholar]
  • F. Villa-Gonzalez, R. Bhattacharyya, T. Athauda, S. Sarma, N. Karmakar, Detecting breaks in cold chain integrity using Chipless RFID timetemperature sensors. IEEE Sensors J. 22, 17808–17818 (2022). doi: 10.1109/JSEN.2022.3194249 [CrossRef] [Google Scholar]
  • X. Wang, Y. Bouzembrak, AO. Lansink, H.J. van der Fels-Klerx, Application of machine learning to the monitoring and prediction of food safety: a review. Compr Rev Food Sci Food Saf. 21, 416–434 (2022). doi: 10.1111/1541-4337.12868 [CrossRef] [PubMed] [Google Scholar]
  • T. Fadiji, T. Bokaba, O.A. Fawole, H. Twinomurinzi, Artificial intelligence in postharvest agriculture: mapping a research agenda. Front Sustain Food Syst. 7, 1226583 (2023). doi:10.3389/fsufs.2023.1226583 [CrossRef] [Google Scholar]
  • S. Mercier, I. Uysal, Neural network models for predicting perishable food temperatures along the supply chain. Biosyst Eng. 171, 91–100 (2018). doi: 10.1016/j.biosystemseng.2018.04.016 [CrossRef] [Google Scholar]
  • J. Loisel, A. Cornuéjols, O. Laguerre, M. Tardet, D. Cagnon, O. Duchesne de Lamotte, et al, Machine learning for temperature prediction in food pallet along a cold chain: comparison between synthetic and experimental training dataset. J Food Eng. 335, 111156 (2022). doi: 10.1016/j.jfoodeng.2022.111156 [CrossRef] [Google Scholar]
  • Y.P. Tsang, K.L. Choy, C.H. Wu CH, G.T. Ho, C.H. Lam, P.S. Koo, An internet of things (IoT)-based risk monitoring system for managing cold supply chain risks. Ind Manag Data Syst. 118, 1432–1462 (2018). doi: 10.1108/IMDS-09-2017-0384 [CrossRef] [Google Scholar]
  • S. Islam, J.M. Cullen, Food traceability: a generic theoretical framework. Food Control. 123, 107848 (2021). doi: 10.1016/j.foodcont.2020.107848 [CrossRef] [Google Scholar]
  • A. Hassoun, N. Alhaj Abdullah, A. Aït-Kaddour, M. Ghellam, A. Beşir, O. Zannou, et al, Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Crit Rev Food Sci Nutr. 1–17 (2022). doi: 10.1080/10408398.2022.2110033 [Google Scholar]
  • T. Makkar, S. Verma, A.K. Dubey, Analysis and detection of fruit defect using neural network. In International conference on recent developments in science, engineering and technology (pp. 554–567). Springer, Singapore (2017) [Google Scholar]
  • M. Takruri, A. Abubakar, N. Alnaqbi, H. Al Shehhi, A.H.M. Jallad, A. Bermak, DoFP-ML: a machine learning approach to food quality monitoring using a DoFP polarization image sensor. IEEE Access. 8, 150282–150290 (2020). doi: 10.1109/ACCESS.2020.3016904 [CrossRef] [Google Scholar]
  • M. Yang, P. Kumar, J. Bhola, M. Shabaz, Development of image recognition software based on artificial intelligence algorithm for the efficient sorting of apple fruit. Int J Syst Assur Engineer Manage. 13, 322–330 (2022). doi: 10.1007/s13198-021-01415-1 [CrossRef] [Google Scholar]
  • T. Amoriello, R. Ciccoritti, P. Ferrante, Prediction of strawberries’ quality parameters using artificial neural networks. Agronomy. 12, 963 (2022). doi:10.3390/agronomy12040963 [CrossRef] [Google Scholar]
  • N. Son, C.R. Chen, CH. Syu, Towards Artificial Intelligence Applications in Precision and Sustainable Agriculture. Agronomy. 14, 239 (2024). doi: 10.3390/agronomy14020239 [CrossRef] [Google Scholar]
  • T. Brosnan, D.W. Sun, Inspection and grading of agricultural and food products by computer vision systems—a review. Comput Electron Agric. 36, 193–213 (2002). doi: 10.1016/S0168-1699(02)00101-1 [CrossRef] [Google Scholar]
  • S. Naik, B. Patel, Machine vision based fruit classification and grading-a review. Int J Comput Appl. 170, 22–34 (2017). doi: 10.5120/ijca2017914937 [Google Scholar]
  • S.K. Behera, A.K. Rath, A. Mahapatra, P.K. Sethy, Identification, classification & grading of fruits using machine learning & computer intelligence: a review. J Ambient Intell Humaniz Comput. 1–11 (2020). doi: 10.1007/s12652-020-01865-8. [PubMed] [Google Scholar]
  • A. Bhargava, A. Bansal, V. Goyal, Machine learning–based detection and sorting of multiple vegetables and fruits. Food Anal. Methods. 15, 228–242 (2022). doi: 10.1007/s12161-021-02086-1 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.