Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 7 | |
Section | Biomedical Advances and Personalized Medicine | |
DOI | https://doi.org/10.1051/bioconf/202411102012 | |
Published online | 31 May 2024 |
- Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod, 2020, 83: 770-803 [CrossRef] [PubMed] [Google Scholar]
- Chi H.M. (2021) Synthetic biology facilitates the efficient synthesis and innovative discovery of natural products. Life Sciences, Volume 33, Issue 12 [Google Scholar]
- Watve M.G., Tickoo R., Jog M.M., et al. How many antibiotics are produced by the genusStreptomyces? Arch Microbiol, 2001, 176: 386-390 [CrossRef] [PubMed] [Google Scholar]
- Zhang M.M., Wong F.T., Wang Y., et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol, 2017, 13: 607-609 [CrossRef] [Google Scholar]
- Xu F., Wu Y., Zhang C., et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol, 2019, 15: 161-168 [CrossRef] [PubMed] [Google Scholar]
- Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones [Google Scholar]
- Deltcheva E., Chylinski K., Sharma C.M., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J]. Nature, 2011, 471: 602-607. [CrossRef] [PubMed] [Google Scholar]
- Mali, P., Yang, L., Esvelt, K.M., et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339: 823-826 [CrossRef] [PubMed] [Google Scholar]
- Sung P., Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions [J]. Nat Rev Mol Cell Biol, 2006, 7: 739-750. [CrossRef] [PubMed] [Google Scholar]
- Wang T., Wei J.J., Sabatini D.M., et al. Genetic screens in human cells using the CRISPR-Cas9 system [J]. Science, 2014, 43: 80-84. [CrossRef] [PubMed] [Google Scholar]
- Yeung A.T.Y., Hale C., Lee A.H., et al. Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis [J]. Nat Commun, 2017, 8: 15013 [CrossRef] [PubMed] [Google Scholar]
- Shi J., Wang E., Milazzo J.P., et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains [J]. Nat Biotechnol, 2015, 33: 661-667. [CrossRef] [PubMed] [Google Scholar]
- Bikard D., Hatoum-Aslan A., Mucida D., et al. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe, 2012, 12(2): 177-186 [CrossRef] [PubMed] [Google Scholar]
- Xu Z., Li M., Li Y., et al. Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa. Cell Rep, 2019, 29(6): 1707–1717.e3 [CrossRef] [PubMed] [Google Scholar]
- Valderrama J.A., Kulkarni S.S., Nizet V., et al. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat Commun, 2019, 10(1):5726. [CrossRef] [PubMed] [Google Scholar]
- Hao M.J., He Y.Z., Zhang H.F., et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother, 2020, 64(9): e00843-e00920. [PubMed] [Google Scholar]
- Wan P., Cui S.Y., Ma Z.B., et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coliby CRISPR-Cas9 system. Infect Drug Resist, 2020, 13: 1171-1178. [CrossRef] [Google Scholar]
- Peng C., Lin Y., Luo H., et al. A comprehensive overview of online resources to identify and predict bacterial essential genes. Front Microbiol, 2017, 8: 2331. [CrossRef] [PubMed] [Google Scholar]
- Hutchison I.C.A., Chuang R.Y., Noskov V.N., et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253 [CrossRef] [PubMed] [Google Scholar]
- Xie Z.X., Li B.Z., Mitchell L.A., et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704. [CrossRef] [PubMed] [Google Scholar]
- Dae-Kyun Ro, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast Nature 2006, 13 04640 [Google Scholar]
- Jianhua Li, Ishmael Mutanda, Kaibo Wang, Lei Yang, Jiawei Wang & Yong Wang Chloroplastic metabolic engineering coupled with isoprenoidpool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nature Communications volume 10, Article number: 4850 (2019) [CrossRef] [PubMed] [Google Scholar]
- Jie Zhang, Lea Hansen, Olga Gudich, Konrad Viehrig. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature volume 609, pages 341-347 (2022) [CrossRef] [PubMed] [Google Scholar]
- Jucan Gao, Yimeng Zuo, Yiling Wang, Dongfang Lia. Biosynthesis of Catharanthine in Engineered Pichia pastori. Nature Synthesis volume 2, pages 231-242 (2023) [CrossRef] [Google Scholar]
- Srinivasan P., Smolke C.D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature, 2020, 585(7826): 614–619. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.