Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 7 | |
Section | Medical Testing and Health Technology Integration | |
DOI | https://doi.org/10.1051/bioconf/202411103002 | |
Published online | 31 May 2024 |
- C. J. Kenyon, "The genetics of ageing," Nature, vol. 464, no. 7288, pp. 504–512, 2010/03/01 2010, doi: 10.1038/nature08980. [CrossRef] [PubMed] [Google Scholar]
- P. P. Singh, B. A. Demmitt, R. D. Nath, and A. Brunet, "The Genetics of Aging: A Vertebrate Perspective," Cell, vol. 177, no. 1, pp. 200–220, 2019/03/21/ 2019, doi: https://doi.org/10.1016/j.cell.2019.02.038. [CrossRef] [PubMed] [Google Scholar]
- A. Bartke et al., "Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights," (in eng), Biogerontology, vol. 4, no. 1, pp. 1–8, 2003, doi: 10.1023/a:1022448532248. [CrossRef] [PubMed] [Google Scholar]
- M. A. McCormick, S. Y. Tsai, and B. K. Kennedy, "TOR and ageing: a complex pathway for a complex process," (in eng), Philos Trans R Soc Lond B Biol Sci, vol. 366, no. 1561, pp. 17–27, Jan 12 2011, doi: 10.1098/rstb.2010.0198. [CrossRef] [PubMed] [Google Scholar]
- C. B. Harley and B. Villeponteau, "Telomeres and telomerase in aging and cancer," Current Opinion in Genetics & Development, vol. 5, no. 2, pp. 249–255, 1995/04/01/ 1995, doi: https://doi.org/10.1016/0959-437X(95)80016-6. [CrossRef] [PubMed] [Google Scholar]
- W. Grabowska, E. Sikora, and A. Bielak-Zmijewska, "Sirtuins, a promising target in slowing down the ageing process," (in eng), Biogerontology, vol. 18, no. 4, pp. 447–476, Aug 2017, doi: 10.1007/s10522-017-9685-9. [CrossRef] [PubMed] [Google Scholar]
- J. Halaschek-Wiener et al., "Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression," (in eng), Genome Res, vol. 15, no. 5, pp. 603–15, May 2005, doi: 10.1101/gr.3274805. [CrossRef] [PubMed] [Google Scholar]
- G. Depuydt et al., "LC-MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism," J Proteome Res, vol. 13, no. 4, pp. 1938–1956, 2014/04/04 2014, doi: 10.1021/pr401081b. [CrossRef] [PubMed] [Google Scholar]
- M. Luzarowski, E. M. Sokolowska, D. Schlossarek, and A. Skirycz, "PROMIS: Co-fractionation Mass Spectrometry for Analysis of Protein-Metabolite Interactions," in Cell-Wide Identification of Metabolite-Protein Interactions, A. Skirycz, M. Luzarowski, and J. C. Ewald Eds. New York, NY: Springer US, 2023, pp. 141–153. [CrossRef] [PubMed] [Google Scholar]
- P. J. Park, "ChIP-seq: advantages and challenges of a maturing technology," (in eng), Nat Rev Genet, vol. 10, no. 10, pp. 669–80, Oct 2009, doi: 10.1038/nrg2641. [CrossRef] [Google Scholar]
- C. T. Murphy and P. J. Hu, "Insulin/insulin-like growth factor signaling in C. elegans," (in eng), WormBook, pp. 1–43, Dec 26 2013, doi: 10.1895/wormbook.1.164.1. [CrossRef] [Google Scholar]
- W. T. Iams and C. M. Lovly, "Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade," (in eng), Clin Cancer Res, vol. 21, no. 19, pp. 4270–4277, Oct 1 2015, doi: 10.1158/1078-0432.Ccr-14-2518. [CrossRef] [PubMed] [Google Scholar]
- C. Kenyon, "The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 366, no. 1561, pp. 9–16, 2011, doi: doi: 10.1098/rstb.2010.0276. [CrossRef] [PubMed] [Google Scholar]
- C. Kenyon, J. Chang, E. Gensch, A. Rudner, and R. Tabtiang, "A C. elegans mutant that lives twice as long as wild type," Nature, vol. 366, no. 6454, pp. 461–464, 1993/12/01 1993, doi: 10.1038/366461a0. [CrossRef] [PubMed] [Google Scholar]
- V. Narayan et al., "Deep Proteome Analysis Identifies Age-Related Processes in C. elegans," Cell Syst, vol. 3, no. 2, pp. 144–159, 2016/08/24/ 2016, doi: https://doi.org/10.1016/j.cels.2016.06.011. [CrossRef] [PubMed] [Google Scholar]
- W.-J. Li et al., "Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans," Nat Comm, vol. 12, no. 1, p. 4568, 2021/07/27 2021, doi: 10.1038/s41467-021-24816-z. [CrossRef] [Google Scholar]
- M. J. Helf, B. W. Fox, A. B. Artyukhin, Y. K. Zhang, and F. C. Schroeder, "Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans," Nat Comm, vol. 13, no. 1, p. 782, 2022/02/10 2022, doi: 10.1038/s41467-022-28391-9. [CrossRef] [Google Scholar]
- A. B. Artyukhin, Y. K. Zhang, A. E. Akagi, O. Panda, P. W. Sternberg, and F. C. Schroeder, "Metabolomic "Dark Matter" Dependent on Peroxisomal beta-Oxidation in Caenorhabditis elegans," J Am Chem Soc, vol. 140, no. 8, pp. 2841–2852, Feb 28 2018, doi: 10.1021/jacs.7b11811. [CrossRef] [PubMed] [Google Scholar]
- P. Mahanti et al., "Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan," (in eng), Cell Metab, vol. 19, no. 1, pp. 73–83, Jan 7 2014, doi: 10.1016/j.cmet.2013.11.024. [CrossRef] [PubMed] [Google Scholar]
- Y. Izrayelit, S. L. Robinette, N. Bose, S. H. von Reuss, and F. C. Schroeder, "2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans," ACS Chem Biol, vol. 8, no. 2, pp. 314–319, Feb 15 2013, doi: 10.1021/cb3004644. [CrossRef] [PubMed] [Google Scholar]
- S. H. von Reuss et al., "Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans," (in eng), J Am Chem Soc, vol. 134, no. 3, pp. 1817–1824, Jan 25 2012, doi: 10.1021/ja210202y. [CrossRef] [PubMed] [Google Scholar]
- B. W. Fox et al., "C. elegans as a model for interindividual variation in metabolism," Nature, vol. 607, no. 7919, pp. 571–577, 2022/07/01 2022, doi: 10.1038/s41586-022-04951-3. [CrossRef] [PubMed] [Google Scholar]
- K. Houthoofd et al., "DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism," (in eng), Neurobiol Aging, vol. 26, no. 5, pp. 689–696, May 2005, doi: 10.1016/j.neurobiolaging.2004.06.011. [CrossRef] [PubMed] [Google Scholar]
- A. W. Gao, R. L. Smith, M. van Weeghel, R. Kamble, G. E. Janssens, and R. H. Houtkooper, "Identification of key pathways and metabolic fingerprints of longevity in C. elegans," (in eng), Exp Gerontol, vol. 113, pp. 128–140, Nov 2018, doi: 10.1016/j.exger.2018.10.003. [CrossRef] [PubMed] [Google Scholar]
- A. M. Olovnikov, "A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon," J Theor Biol, vol. 41, no. 1, pp. 181–190, 1973/09/14/ 1973, doi: https://doi.org/10.1016/0022-5193(73)90198-7. [CrossRef] [PubMed] [Google Scholar]
- J. D. Watson, "Origin of Concatemeric T7DNA," Nat New Biol, vol. 239, no. 94, pp. 197–201, 1972/10/01 1972, doi: 10.1038/newbio239197a0. [CrossRef] [PubMed] [Google Scholar]
- W. Mannherz and S. Agarwal, "Thymidine nucleotide metabolism controls human telomere length," Nat Genet, vol. 55, no. 4, pp. 568–580, 2023/04/01 2023, doi: 10.1038/s41588-023-01339-5. [CrossRef] [PubMed] [Google Scholar]
- G. Y. Liu and D. M. Sabatini, "mTOR at the nexus of nutrition, growth, ageing and disease," Nat Rev Mol Cell Bio, vol. 21, no. 4, pp. 183–203, 2020/04/01 2020, doi: 10.1038/s41580-019-0199-y. [CrossRef] [PubMed] [Google Scholar]
- D. Papadopoli et al., "mTOR as a central regulator of lifespan and aging," (in eng), F1000Res, vol. 8, 2019, doi: 10.12688/f1000research.17196.1. [Google Scholar]
- C. C. Thoreen, L. Chantranupong, H. R. Keys, T. Wang, N. S. Gray, and D. M. Sabatini, "A unifying model for mTORC1-mediated regulation of mRNA translation," Nature, vol. 485, no. 7396, pp. 109–113, 2012/05/01 2012, doi: 10.1038/nature11083. [CrossRef] [PubMed] [Google Scholar]
- N. Deleyto-Seldas and A. Efeyan, "The mTOR-Autophagy Axis and the Control of Metabolism," (in English), Front Cell Dev Biol, Mini Review vol. 9, 2021-July-01 2021, doi: 10.3389/fcell.2021.655731. [Google Scholar]
- S. S. Grewal, "Insulin/TOR signaling in growth and homeostasis: a view from the fly world," (in eng), Int J Biochem Cell Biol, vol. 41, no. 5, pp. 1006–1010, May 2009, doi: 10.1016/j.biocel.2008.10.010. [CrossRef] [PubMed] [Google Scholar]
- H. W. S. Tan, A. Y. L. Sim, and Y. C. Long, "Glutamine metabolism regulates autophagydependent mTORC1 reactivation during amino acid starvation," Nat Comm, vol. 8, no. 1, p. 338, 2017/08/24 2017, doi: 10.1038/s41467-017-00369-y. [CrossRef] [Google Scholar]
- J. H. Lee et al., "Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies," (in eng), Science, vol. 327, no. 5970, pp. 1223–1228, Mar 5 2010, doi: 10.1126/science.1182228. [CrossRef] [PubMed] [Google Scholar]
- M. Nakamura, N. Satoh, S. Horita, and M. Nangaku, "Insulin-induced mTOR signaling and gluconeogenesis in renal proximal tubules: A minireview of current evidence and therapeutic potential," (in English), Front Pharmacol, Mini Review vol. 13, 2022-October-10 2022, doi: 10.3389/fphar.2022.1015204. [Google Scholar]
- J. S. Kim et al., "Sestrin2 inhibits mTORC1 through modulation of GATOR complexes," Sc Rep, vol. 5, no. 1, p. 9502, 2015/03/30 2015, doi: 10.1038/srep09502. [CrossRef] [Google Scholar]
- D. M. Sabatini, "Twenty-five years of mTOR: Uncovering the link from nutrients to growth," Proc Natl Acad Sci U S A, vol. 114, no. 45, pp. 11818–11825, 2017, doi: doi: 10.1073/pnas.1716173114. [CrossRef] [PubMed] [Google Scholar]
- C. Leitão et al., "The Effect of Nutrition on Aging-A Systematic Review Focusing on Aging-Related Biomarkers," (in eng), Nutrients, vol. 14, no. 3, Jan 27 2022, doi: 10.3390/nu14030554. [CrossRef] [PubMed] [Google Scholar]
- V. D. Longo, M. Di Tano, M. P. Mattson, and N. Guidi, "Intermittent and periodic fasting, longevity and disease," Nat Aging, vol. 1, no. 1, pp. 47–59, 2021/01/01 2021, doi: 10.1038/s43587-020-00013-3. [CrossRef] [PubMed] [Google Scholar]
- A. Tauffenberger, A. Vaccaro, and J. A. Parker, "Fragile lifespan expansion by dietary mitohormesis in C. elegans," (in eng), Aging (Albany NY), vol. 8, no. 1, pp. 50–61, Jan 2016, doi: 10.18632/aging.100863. [CrossRef] [PubMed] [Google Scholar]
- A. Tauffenberger, A. Vaccaro, A. Aulas, C. Vande Velde, and J. A. Parker, "Glucose delays agedependent proteotoxicity," (in eng), Aging Cell, vol. 11, no. 5, pp. 856–866, Oct 2012, doi: 10.1111/j.1474-9726.2012.00855.x. [CrossRef] [PubMed] [Google Scholar]
- M. Niero, G. Bartoli, P. De Colle, M. Scarcella, and M. Zanetti, "Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review," (in eng), Nutrients, vol. 15, no. 10, May 18 2023, doi: 10.3390/nu15102365. [Google Scholar]
- J. Fu, Y. Zheng, Y. Gao, and W. Xu, "Dietary Fiber Intake and Gut Microbiota in Human Health," (in eng), Microorganisms, vol. 10, no. 12, Dec 18 2022, doi: 10.3390/microorganisms10122507. [Google Scholar]
- D. B. Rosoff et al., "Multivariate genome-wide analysis of aging-related traits identifies novel loci and new drug targets for healthy aging," Nat Aging, vol. 3, no. 8, pp. 1020–1035, 2023/08/01 2023, doi: 10.1038/s43587-023-00455-5. [CrossRef] [PubMed] [Google Scholar]
- E. Uffelmann et al., "Genome-wide association studies," Nat Rev Methods Primers, vol. 1, no. 1, p. 59, 2021/08/26 2021, doi: 10.1038/s43586-021-00056-9. [CrossRef] [Google Scholar]
- V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré, and D. Meyre, "Benefits and limitations of genomewide association studies," (in eng), Nat Rev Genet, vol. 20, no. 8, pp. 467–484, Aug 2019, doi: 10.1038/s41576-019-0127-1. [CrossRef] [PubMed] [Google Scholar]
- P. Y. Jeong et al., "Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone," (in eng), Nature, vol. 433, no. 7025, pp. 541–545, Feb 3 2005, doi: 10.1038/nature03201. [CrossRef] [PubMed] [Google Scholar]
- R. A. Butcher, M. Fujita, F. C. Schroeder, and J. Clardy, "Small-molecule pheromones that control dauer development in Caenorhabditis elegans," (in eng), Nat Chem Biol, vol. 3, no. 7, pp. 420–422, Jul 2007, doi: 10.1038/nchembio.2007.3. [CrossRef] [PubMed] [Google Scholar]
- R. A. Butcher, J. R. Ragains, E. Kim, and J. Clardy, "A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components," (in eng), Proc Natl Acad Sci U S A, vol. 105, no. 38, pp. 14288–14292, Sep 23 2008, doi: 10.1073/pnas.0806676105. [CrossRef] [PubMed] [Google Scholar]
- C. Pungaliya et al., "A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans," (in eng), Proc Natl Acad Sci U S A, vol. 106, no. 19, pp. 7708–7713, May 12 2009, doi: 10.1073/pnas.0811918106. [CrossRef] [PubMed] [Google Scholar]
- M. Luzarowski, E. M. Sokolowska, D. Schlossarek, and A. Skirycz, "PROMIS: Co-fractionation Mass Spectrometry for Analysis of Protein-Metabolite Interactions," (in eng), Methods Mol Biol, vol. 2554, pp. 141–153, 2023, doi: 10.1007/978-1-0716-2624-5_10. [CrossRef] [PubMed] [Google Scholar]
- M. O. Akinlaja, R. G. Stacey, Q. W. T. Chan, and L. J. Foster, "Discovering Protein-Protein Interactions using Co-Fractionation-Mass Spectrometry with Label-Free Quantitation," (in eng), Methods Mol Biol, vol. 2690, pp. 241–253, 2023, doi: 10.1007/978-1-0716-3327-4_21. [CrossRef] [PubMed] [Google Scholar]
- C. D. McWhite et al., "Co-fractionation/mass spectrometry to identify protein complexes," (in eng), STAR Protoc, vol. 2, no. 1, p. 100370, Mar 19 2021, doi: 10.1016/j.xpro.2021.100370. [CrossRef] [PubMed] [Google Scholar]
- P. J. Park, "ChIP-seq: advantages and challenges of a maturing technology," Nat Rev Genet, vol. 10, no. 10, pp. 669–680, 2009/10/01 2009, doi: 10.1038/nrg2641. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.