Open Access
Issue
BIO Web Conf.
Volume 115, 2024
2nd Edition of the International Conference on “Natural Resources and Sustainable Development” (RENA23)
Article Number 06003
Number of page(s) 7
Section Production and Valorization of Plant Resources
DOI https://doi.org/10.1051/bioconf/202411506003
Published online 25 June 2024
  • P.J. Davies, The plant hormones: Their nature, occurrence, and functions. Chapter In P.J. Davies (Ed.), Plant hormones: Physiology, biochemistry and molecular biology, Dordrecht: Springer Netherlands, 1-15 (2010). [Google Scholar]
  • P. Hedden & V. Sponse, A Century of Gibberellin Research. JPGR. 34, 740–760(2015). [Google Scholar]
  • R. Asif, Y. Rifat., & M. Ahmad, Phytohormones as plant growth regulators and safe protectors against biotic and abiotic stress. PHRNPA, 115, (2022). [Google Scholar]
  • L. Rousel. The Auxins, essential agents in vegetable growth, RTFT, 158 (1974). [Google Scholar]
  • V. Gomez-Roldan, S. Fermas, PB Brewer, V Puech-Pagès, EA Dun, JP. Pillot, F. Letisse, R. Matusova, S. Danoun, JP. Portais, H. Bouwmeester, G. Bécard, CA. Beveridge, C. Rameau, SF. Rochange. Strigolactone inhibition of shoot branching. N, Sep 11; 455(7210):189–94. (2008). [Google Scholar]
  • M.E. Studham and G.C. Macintosh, Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions, BMC RN 5 (1):392, (2012). [Google Scholar]
  • A. Vande Broek, M. Lambrecht, K. Eggermont, J. Vanderleyden. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. JB. 181(4):1338–1342, (1999). [CrossRef] [PubMed] [Google Scholar]
  • P. Venkatachalam and N. Jayabala, Effect of Auxins and Cytokinins on Efficient Plant Regeneration and Multiple-Shoot Formation from Cotyledons and Cotyledonary-Node Explants of Groundnut ( Arachis hypogaea L .) by In Vitro Culture Technology, JABB, 67 (3):237–247(1997). [Google Scholar]
  • R Gupta and SK Chakrabarty. Gibberellic acid in plant: still a mystery unresolved. JPSB, 8 (9):e25504, (2013). [Google Scholar]
  • Vildanova MS., Smirnova EA. Effects of different classes of plant hormones on mammalian cells, RT. 58 (1):5–15 (2016). [Google Scholar]
  • D.K. Singh, A. Shukla, and S. Dixit, Impact of phytohormones auxin and cytokinin on mammalian cells, IJBTR, 8, Issue 2, 2249–6858 (2018). [Google Scholar]
  • M.S. Vildanova, M.A. Savitskaya, G.E. Onishchenko, and E.A. Smirnova, The Effect of Plant Hormones on the Components of the Secretory Pathway in Human Normal and Tumor Cells, T, 8, 5, 407–415 (2014). [Google Scholar]
  • H. Rhazi, N. Safini, K. Mikou, M. Alhyane, and M. Lenk, Comparative sensitivity study of primary cells, Vero, OA3. Ts and ESH-L cell lines to lumpy skin disease, Sheeppox, and goatpox viruses ’ detection and growth, JVM, 293 (2021). [Google Scholar]
  • P. Kumar, A. Nagarajan, PD. Uchil. Analysis of Cell Viability by the MTT Assay. C SHP. 6 (2018). [Google Scholar]
  • T. Fashina, Y. Huang Y.J. Thomas J.CD. Conrady & S. Yeh. Ophthalmic Features and Implications of Poxviruses: Lessons from Clinical and Basic Research. JM; 10, 12 (2022). [Google Scholar]
  • M.D. Baron, A. Diallo, R. Lancelot, and G. Libeau, Peste des Petits Ruminants Virus, BAVR, 95:1–42. (2016). [Google Scholar]
  • S. Babiuk, G. Parkyn, J. Copps, JE. Larence, MI. Sabara, TRO Bowden, DB. Boyle, RP KitchingEvaluation of an Ovine Testis Cell Line (OA3. Ts) for Propagation of Capripoxvirus Isolates and Development of an Immunostaining Technique for Viral Plaque Visualization, JVDI, 19, 5 (2007). [Google Scholar]
  • C. Won, S.K. Park, S. Cho, B. Min, and S. Roh, Kinetin Enhances In Vitro Development of Parthenogenetic and Nuclear Transfer Porcine Embryos, MRD 1709, (2008). [Google Scholar]
  • V. Cernaro, MA. Medici, G. Leonello, A. Buemi, FH. Kohnke, A. Villari, D. Santoro, M. Buemi, Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells, RF, 37, 15 (2015). [Google Scholar]
  • J.E. Davey and J. van Staden, Cytokinin Activity in Lupinus albus L. IV. Distribution in Seeds, JPP, 63, 5, (1979). [Google Scholar]
  • S. Perilli, L. Moubayidin, and S. Sabatini, The molecular basis of cytokinin function, COPB, 13, 1 (2010). [Google Scholar]
  • C.O. Miller, F. Skoog, M.H. Von saltza, and F.M. Strong, Kinetin, a cell division factor from deoxyribonucleic acid, JACS. 1392-1392, 77, 5 (1955). [Google Scholar]
  • R. Guttman, Effects of kinetin on cell division, with special reference to initiation and duration of mitosis, JC, 8, 1, (1956). [Google Scholar]
  • J.R. Sheu, G. Hsiao, MY. Shen, CY. Chou, CH. Lin, TF. Chen, DS. Chou, Inhibitory mechanisms of kinetin, a plant growth-promoting hormone, in platelet aggregation, JP, 14, 3 (2003). [Google Scholar]
  • P. Achard, A. Gusti, S. Cheminant, M. Alioua, S. Dhondt, F. Coppens, GTS. Beemster, P. Genschik, Report Gibberellin Signaling Controls Cell Proliferation Rate in Arabidopsis, JOCB, 19, 14 (2009). [Google Scholar]
  • P. Achard, J. Renou, R. Berthome, N.P. Harberd, and P. Genschik, “Report Plant DELLAs Restrain Growth and Promote Survival of Adversity by Reducing the Levels of Reactive Oxygen Species, jCb, 18 (2008). [Google Scholar]
  • N. Olszewski, T. Sun, and F. Gublerc. Signaling: Gibberellin Response Pathways, JPC, 14 (2002). [Google Scholar]
  • T. Lange, Review Molecular biology of gibberellin synthesis, JP, 204 (1998). [Google Scholar]
  • Y. Kamiya and J.L. García-Martínez, Regulation of gibberellin biosynthesis by light., COPB, 2, 5 (1999). [Google Scholar]
  • P. Hedden and A.L. Phillips, Gibberellin metabolism: new insights revealed by the genes. JTPS, 5, 12 (2000). [Google Scholar]
  • S. Yamaguchi, Y. Kamiya, and T. Sun, Distinct cell-speci ® c expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination, PJ, 28 (4) 443–453 (2001). [Google Scholar]
  • M. Majda M.S. Robert. The Role of Auxin in Cell Wall Expansion. IJMS, Mar 22;19 (4):951, (2018) [CrossRef] [Google Scholar]
  • C. Cookson, D.J. Osborne, C. Cookson, and D.J. Osborne. Stimulation of Cell Extension by Ethylene and Auxin in Aquatic Plants, JP. 144, 1 (1978). [Google Scholar]
  • Du. Minmin, P. Edgar. S. Palding, and W.M. Gray. Rapid Auxin-Mediated Cell Expansion, ARPB, 71 (2020). [Google Scholar]
  • R.E. Cleland, Evidence that Auxin-induced Growth of Soybean Hypocotyls Involves Proton Excretionl, JPPh 66, 3 (2016). [Google Scholar]
  • J.T. Lowery and A. Arbor, Cell wall synthesis and cell elongation in oat coleoptile tissue, AJB, 49, 9 (1962). [Google Scholar]
  • N. Gougoulias, Effect of some phytohormones on polyphenols content and antioxidative activity of grape of mavrud variety (Vitis vinifera L.), OC, 34, 1 (2011). [Google Scholar]
  • P. Taylor, Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars, JPN, 37-41 (2012). [Google Scholar]
  • A. Abdel and H. Abdel, Interaction of salinity and phyohormones on antioxidant enzymes of two roselle cultivars, IJAB, 11 (2009). [Google Scholar]
  • V. Kumar, Effect of Iron and Phytohormones Application on Antioxidant Enzymes Activity, Chlorophyll and Grain Yield of Maize in Iron-deficient Soil, CJAST, 39, 5(2020). [Google Scholar]
  • E.M. Othman, M. Naseem, E. Awad, and T. Dandekar, The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells, PLOS ONE (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.