Open Access
BIO Web Conf.
Volume 115, 2024
2nd Edition of the International Conference on “Natural Resources and Sustainable Development” (RENA23)
Article Number 06005
Number of page(s) 7
Section Production and Valorization of Plant Resources
Published online 25 June 2024
  • M.T. Gomez-Sagasti, L. Epelde, I. Alkorta, and C. Garbisu. Appl. Soil Eco. 105, 207–210. (2016). [CrossRef] [Google Scholar]
  • F. Gauthier-Lafaye, F. Weber. Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution ofthe atmosphere. Precambrian Res. 120, 81–100. (2003) [CrossRef] [Google Scholar]
  • F. Pambo. Formation conditions of Proterozoic manganese carbonates and mineralogical and geochemical analysis of associated manganese bioxide ores in the Moanda deposit (South-East, Gabon). University of Burgundy thesis, 274 pp.(2004) [Google Scholar]
  • H. Ali, E. Khan, & I. Ilahi. Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, Article ID: 6730305. (2019) [Google Scholar]
  • S. Mombo, N. Lepengue, B. M'batchi, A. Souza, A. Muluway Kalenda, C. Dumat. Study of the impact of manganese on the mineral uptake of cassava (Manihot esculentaCrantz) in manganiferous soils in Gabon and its potential environmental and health consequences. International Congress - June 6-9, (2017) [Google Scholar]
  • F. Eba, J.A. Ondo, M.S. Emane, M. Ollui-M'boulou, J. Omva-Zue. Teneurs en manganèse accumulé dans quelques cultures vivrières de la région manganésifère de Moanda (Gabon). J. Soc. Ouest-Afr. Chem. 023: 69–74. (2007) [Google Scholar]
  • Y. Gong, D. Zhao, Q. Wang. An overview of field studies on remediation of heavy metal and metalloid contaminated soils: technical advances in the last decade. Water Res. 147, 440–460. (2018) [Google Scholar]
  • X. Liu, Y. Shen, L. Lou, C. Ding, Q. Copper tolerance of biomass enables cultivation of elephant grass (Pennisetum purpureum Schumach), vetiver grass (Vetiveria zizanioides) and upland reed (Phragmites australis). Biotechnol. Advanced 27, 633–640 (2009) [CrossRef] [Google Scholar]
  • D. J. Glass. Economic Potential of Phytoremediation. In Raskin, I. & Ensley, B.D. (Eds.) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; p. 15–31. (2000) [Google Scholar]
  • S.D. Ebbs, M.M. Lasat, D.J. Brady; J. Cornish, R. Gordon, L.V. Kochian. Phytoextraction of cadmium and zinc from contaminated soil. J. Environ. Qual. 6, 1424–1430, (1997) [CrossRef] [Google Scholar]
  • M.N.V. Prasad. Phytoremediation of metal-polluted ecosystems: hope for commercialization. Russ. J. Plant Physiol. 50: 764–780. (2003) [Google Scholar]
  • E. Lombi, F.J. Zhao, F.J. Dunham, S.P. McGrath. Journal of Environmental Quality, 30, 1919-1926. [Google Scholar]
  • Y. Chen, Z. Shen, X. Li. Applied Geochemistry, 19, 1553–1565. (2004). [CrossRef] [Google Scholar]
  • A. A. Zunaidi, L. H. Lim, F. Metali. Comparative assessment of the heavy metal phytoextraction potential of vegetables from agricultural soils; A field experiment. Heliyon 9 e13547 1–13, (2023) [Google Scholar]
  • A. D. Chane, Z. Košnáŕ, T. Hŕebečková, L. Wiesnerová, M. Jozífek, P. Doležal, L. Praus, P. Tlustoš. Bioremediation of the synthetic musk compounds Galaxolide and Tonalide by white rot fungal strain-assisted phytoremediation in biosolid -amended soil. Chemosphere, 328, 138605. (2023) [CrossRef] [PubMed] [Google Scholar]
  • S. Dousset, M. Thévenot, D. Schrack, V. Gouy, & N. Carluer. Effect of grass cover on water and pesticide transport in undisturbed soil columns, comparison with field study (Morcille catchment, Beaujolais). Environ. Polluez. 158, 2446–2453. (2010) [CrossRef] [Google Scholar]
  • N. Ondo Zue Abaga, S. Dousset, C. Munier-Lamy, D. Billet. Efficacy of vetiver grass (Vetiveria zizanioides) for endosulfan phytoremediation in two cotton soils of Burkina Faso. Int. J. Phytoremediation 16, 95–108. (2014) [CrossRef] [PubMed] [Google Scholar]
  • N. Darajeh, P. Truong, S. Rezania, H. Alizadeh, & D.W. Leung. Effectiveness of Vetiver Grass versus Other Plants for Phytoremediation of Contaminated Water. Journal of Environmental Treatment Techniques, 7, 485–500. (2019). [Google Scholar]
  • C.C. Ng, A.N. Boyce, M.R. Abas, N.Z. Mahmood, F. Han. Environmental Monitoring and Assessment, 191, 1–16. (2019) [Google Scholar]
  • S.D. Ebbs, L.V. Kochian. Phytoextraction of zinc by oats (Avena sativa), barley (Hordeum vulgare) and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32 (6), 802–806. (1998) [Google Scholar]
  • M. Chen, P. Xu, G. Zeng, C. Yang, D. Huang, J. Zhang. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv. 33 745e755. (2015) [Google Scholar]
  • W. Aprill, R.C. Sims. Evaluation of the use of meadow grasses to stimulate the processing of polycyclic aromatic hydrocarbons in soil. Chemosphere, 20, 253–265. (1990) [CrossRef] [Google Scholar]
  • A.J. Baker. Metal hyperaccumulator plants: a review of the biological resource for possible exploitation in the phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soils and water (Eds.), Terry, N., Baneulos G.S., Boca Raton, Florida: CRC Press LLC, pp 85–107. (1999) [Google Scholar]
  • Directorate-General for the Environment. Communication nationale sur les changements climatiques. 144p (2005) [Google Scholar]
  • J. Yoon, X. Cao, Q. Zhou, L.K. Ma. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368: 456–464. (2006) [Google Scholar]
  • S. Denimal, F. Barbecot, L. Dever, N. Tribovillard, F. Meilliez. Traçage chimique et isotopique des eaux souterraines en relation avec la lixiviation des déblais miniers, bassin houiller Nord-Pas-de-Calais (France) [Chemical and isotopic tracing of groundwater in relation to slag heap leaching water, Nord-Pas-de-Calais mining basin (France)]. Bulletin de la Société Géologique de France. V172, N 1, P 111–120 (2001) [CrossRef] [Google Scholar]
  • F.C. Lidon, M. Barreiro, J. Ramalho. Manganese accumulation in rice: implications for photosynthetic functioning. J. Plant Physiol. 161, 1235–1244. (2004) [CrossRef] [Google Scholar]
  • F. Itanna. and B. Coulman. Phytoextraction of copper, iron, manganese and zinc from environmentally contaminated sites in Ethiopia with three grass species, Communications in Soil Science and Plant Analysis, 34 : 1-2, 111–124, (2003) [CrossRef] [Google Scholar]
  • M.M.A. Boojar and F. Goodarzi. Ecotoxicology and environmental safety 71, 692–699(2008) [CrossRef] [PubMed] [Google Scholar]
  • J.W. Johnson. Breeding for improved root-ring potential under stress condition I.N : Physiological environment Montpelier, France 6July. 1989, Colloque INRA N°55 : pp 307–317. (1991) [Google Scholar]
  • U. Schäfer, Manganese. In Merian (E.), Anke (M.), Ihnat (M.), Stoeppler (Eds.), Elements and their compounds in the environment: occurrence, analysis and biological relevance. 2, Metals and their compounds. Weinheim: Wiley-VCH, 2nd ed. completely rev. And enlarged p. 901–930 (xLii, 4791247). 92(2004) [CrossRef] [Google Scholar]
  • T. Vamerali ; M. Bandiera; G. Mosca. Field crops for phytoremediation of contaminated land. A review. Environ. Chim. Lett. 8, 1–17(2010) [CrossRef] [Google Scholar]
  • I. Van Dyck; N. Vanhoudt; I. Vives, J. Batlle; N. Horemans ; A. Van Gompel; R. Nauts; J. Wannijn.; A. Wijgaerts.; A. Vassilev; Vangronsveld. Absorption of Co, Cs, Mn, Ni and Zn by Lemna minor and their effects on physiological and biochemical functions. Experimental Environmental Botany. 213 ; 105440. (2023) [CrossRef] [Google Scholar]
  • R. Chandra and V. Kumar. Phytoextraction of heavy metals by potential native plants and microscopic observation of root growth on stabilized distillery sludge as a prospective tool for in situ phytoremdiation of industrial waste. Environ. Sci. Pollut. Res, 24 (3), p. 1–15 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.