Open Access
Issue |
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bioconf/202411701004 | |
Published online | 05 July 2024 |
- L. Dong, M. Li, S. Zhang, X. Si, Y. Bai, & C. Zhang, NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination, 476 (2020). https://doi.org/10.1016/j.desal.2019.114227 [CrossRef] [Google Scholar]
- E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, & D. Prasetyoko, Review on recent advances of carbon based adsorbent for methylene blue removal from waste water.Materials Today Chemistry, 16 (2020) 100233. https://doi.org/https://doi.org/10.1016/j.mtchem.2019.100233 [CrossRef] [Google Scholar]
- Q. Li, Y. Li, X. Ma, Q. Du, K. Sui, D. Wang, C. Wang, H. Li, & Y. Xia, Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chemical Engineering Journal, 316 (2017) 623-630. https://doi.org/10.1016/j.cej.2017.01.098 [CrossRef] [Google Scholar]
- S. Yang, T. Zeng, Y. Li, J. Liu, Q. Chen, J. Zhou, Y. Ye, & B. Tang, Preparation of Graphene Oxide Decorated Fe3O4@SiO2 Nanocomposites with Superior Adsorption Capacity and SERS Detection for Organic Dyes. Journal of Nanomaterials, 2015 (2015). https://doi.org/10.1155/2015/817924 [PubMed] [Google Scholar]
- X. Shao, J. Wang, Z. Liu, N. Hu, M. Liu, C. Duan, R. Zhang, & C. Quan, Cellulose based cation-exchange fiber as filtration material for the rapid removal of methylene blue from wastewater. Cellulose, 28 (2021) 9355-9367. https://doi.org/10.1007/s10570-021-04103-2 [CrossRef] [Google Scholar]
- S. Jahankhah, M. M. Sabzehmeidani, M. Ghaedi, K. Dashtian, & H. Abbasi-Asl, Fabrication polyvinyl chloride mixed matrix membrane via embedding Fe3O4/ polydopamine /Ag nanocomposite for water treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 285 (2022). https://doi.org/10.1016/j.mseb.2022.115935 [CrossRef] [Google Scholar]
- Y. Huang, C. fa Xiao, Q. lin Huang, H. liang Liu, J. qiang Hao, & L. Song, Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. Journal of Membrane Science, 548 (2018) 184-193. https://doi.org/10.1016/j.memsci.2017.11.027 [CrossRef] [Google Scholar]
- L. Dong, M. Li, S. Zhang, X. Si, Y. Bai, & C. Zhang, NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions.Desalination, 476 (2020) 114227. https://doi.org/10.1016/j.desal.2019.114227 [CrossRef] [Google Scholar]
- P. V. Chai, J. Y. Law, E. Mahmoudi, & A. W. Mohammad, Development of iron oxide decorated graphene oxide (Fe3O4/GO) PSf mixed-matrix membrane for enhanced antifouling behavior. Journal of Water Process Engineering, 38 (2020). https://doi.org/10.1016/j.jwpe.2020.101673 [Google Scholar]
- C. P. Vun, A. W. Mohammad, T. Y. Haan, & E. Mahmoudi, Evaluation of Iron oxide decorated on graphene oxide (FE3O4/GO) nanohybrid incorporated in PSF membrane at different molar ratios for Congo red rejection. Jurnal Teknologi, 79 (2017) 73-81. https://doi.org/10.11113/jt.v79.10440 [Google Scholar]
- N. Munasir, R. P. Kusumawati, D. H. Kusumawati, Z. A. I. Supardi, A. Taufiq, & Darminto, Characterization of Fe3O4/rGO composites from natural sources: Application for dyes color degradation in aqueous solution. International Journal of Engineering, Transactions A: Basics, 33 (2020) 18-27. https://doi.org/10.5829/ije.2020.33.01a.03 [Google Scholar]
- M. Mirzaei, T. Mohammadi, N. Kasiri, & M. A. Tofighy, Fabrication of magnetic field induced mixed matrix membranes containing GO/Fe3O4nanohybrids with enhanced antifouling properties for wastewater treatment applications. Journal of Environmental Chemical Engineering, 9 (2021). https://doi.org/10.1016/j.jece.2021.105675 [CrossRef] [Google Scholar]
- C. P. Vun, A. W. Mohammad, T. Y. Haan, & E. Mahmoudi, Evaluation of Iron oxide decorated on graphene oxide (FE3O4/GO) nanohybrid incorporated in PSF membrane at different molar ratios for Congo red rejection. Jurnal Teknologi, 79 (2017) 73-81. https://doi.org/10.11113/jt.v79.10440 [Google Scholar]
- P. V. Chai, J. Y. Law, E. Mahmoudi, & A. W. Mohammad, Development of iron oxide decorated graphene oxide (Fe3O4/GO) PSf mixed-matrix membrane for enhanced antifouling behavior. Journal of Water Process Engineering, 38 (2020) 101673. https://doi.org/10.1016/j.jwpe.2020.101673 [CrossRef] [Google Scholar]
- J. Alam, D. Lawrence Arockiasamy, M. Ghasemi, & M. Alhoshan, Synthesis and Optimization of PES-Fe3O4 Mixed Matrix Nanocomposite Membrane: Application Studies in Water Purification Javed. Polymers and Polymer Composites, 16 (2013) 101-113. https://doi.org/10.1002/pc [Google Scholar]
- Y. Huang, C. fa Xiao, Q. lin Huang, H. liang Liu, J. qiang Hao, & L. Song, Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. Journal of Membrane Science, 548 (2018) 184-193. https://doi.org/10.1016/j.memsci.2017.11.027 [CrossRef] [Google Scholar]
- Munasir R. & P. Kusumawati, Synthesis and Characterization of Fe3O4@rGO Composite with Wet-Mixing (ex-situ) Process. Journal of Physics: Conference Series, 1171 (2019) 1-6. https://doi.org/10.1088/1742-6596/1171/1/012048 [Google Scholar]
- J. Alam, L. A. Dass, M. Ghasemi, & M. Alhoshan, Synthesis and optimization of PES-Fe3O4 mixed matrix nanocomposite membrane: Application studies in water purification. Polymer Composites, 34 (2013) 1870-1877. https://doi.org/10.1002/pc.22593 [CrossRef] [Google Scholar]
- Y. Pu, X. Tao, X. Zeng, Y. Le, & J. F. Chen, Synthesis of Co-Cu-Zn doped Fe3O4 nanoparticles with tunable morphology and magnetic properties. Journal of Magnetism and Magnetic Materials, 322 (2010) 1985-1990. https://doi.org/10.1016/j.jmmm.2010.01.018 [CrossRef] [Google Scholar]
- K. Deng, H. Wu, Y. Li, J. Jiang, M. Wang, Z. Yang, & R. Zhang, The resin-ceramicbased Fe3O4/graphite composites rapidly fabricated by selective laser sintering for integration of structural-bearing and broadband electromagnetic wave absorption. Journal of Alloys and Compounds, 943 (2023). https://doi.org/10.1016/j.jallcom.2023.169120 [CrossRef] [Google Scholar]
- R. Atchudan, T. N. J. Immanuel Edison, S. Perumal, R. Vinodh, N. Muthuchamy, & Y. R. Lee, One-pot synthesis of Fe3O4@graphite sheets as electrocatalyst for water electrolysis. Fuel, 277 (2020). https://doi.org/10.1016/j.fuel.2020.118235 [CrossRef] [Google Scholar]
- Z. Qi, T. P. Joshi, R. Liu, H. Liu, & J. Qu, Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. Journal of Hazardous Materials, 329 (2017) 193-204. https://doi.org/10.1016/j.jhazmat.2017.01.007 [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, J. Wang, Z. Su, M. Lu, S. Liu, F. Gu, J. Liu, Y. Tu, & T. Jiang, Spinel MnFe2O4 nanoparticles (MFO-NPs) for CO2 cyclic decomposition prepared from ferromanganese ores. Ceramics International, 46 (2020) 14206-14216. https://doi.org/10.1016/j.ceramint.2020.02.229 [CrossRef] [Google Scholar]
- A. Wahab, M. Imran, M. Ikram, M. Naz, M. Aqeel, A. Rafiq, H. Majeed, & S. Ali, Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Applied Nanoscience (Switzerland), 9 (2019) 1823-1832. https://doi.org/10.1007/s13204-019-00970-1 [CrossRef] [Google Scholar]
- A. Taufiq, Sunaryono, N. Hidayat, A. Hidayat, E. G. R. Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Pratapa, & Darminto, Studies on Nanostructure and Magnetic Behaviors of Mn-Doped Black Iron Oxide Magnetic Fluids Synthesized from Iron Sand. Nano, 12 (2017). https://doi.org/10.1142/S1793292017501107 [CrossRef] [Google Scholar]
- W. P. Agista, S. U. I. Subadra, A. Taufiq, A. Hidayat, E. Handoko, M. Alaydrus, T. Amrillah, & I. Jeerapan, Exploring the role of Mn2+ in the structure, magnetic properties, and radar absorption performance of MnxFe3−xO4-DEA/MWCNT nanocomposites. RSC Advances, 13 (2023) 29332-29341. https://doi.org/10.1039/d3ra05333d [CrossRef] [PubMed] [Google Scholar]
- Sunaryono, K. Saputra, R.I. Andina, N. Hidayat, A. Taufiq, H. Susanto, N. Mufti, A. Hidayat, C. I. Yogihati, S. Triwicaksono, & S. Soontaranon, Effect of Polyethylene Glycol (PEG) on Particle Distribution of Mn0.25Fe2.75O4-PEG 6000 Nanoparticles. J Phys Conf Ser (Institute of Physics Publishing, 2018). https://doi.org/10.1088/1742-6596/1093/1/012005 [Google Scholar]
- S. Tabatabai Yazdi, P. Iranmanesh, S. Saeednia, & M. Mehran, Structural, optical and magnetic properties of MnxFe3−xO4 nanoferrites synthesized by a simple capping agent-free coprecipitation route. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 245 (2019) 55-62. https://doi.org/10.1016/j.mseb.2019.05.009 [CrossRef] [Google Scholar]
- S. Kamari & A. Shahbazi, Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES-nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long-term operation and reusability tests. Chemosphere, 243 (2020). https://doi.org/10.1016/j.chemosphere.2019.125282 [Google Scholar]
- M. Safarpour, V. Vatanpour, & A. Khataee, Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 393 (2016) 65-78. https://doi.org/10.1016/j.desal.2015.07.003 [CrossRef] [Google Scholar]
- S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, & H. Zangeneh, Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453 (2014) 292-301. https://doi.org/10.1016/j.memsci.2013.10.070 [CrossRef] [Google Scholar]
- V. M. Alfianti & M. Munasir, Fabrication and Characterization of GO-Fe3O4/PSF Membrane with Phase Inversion Method. JPSE (Journal of Physical Science and Engineering), 6 (2021) 55-60. https://doi.org/10.17977/um024v6i22021p055 [CrossRef] [Google Scholar]
- H. Koulivand, A. Shahbazi, & V. Vatanpour, Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles. Chemical Engineering Research and Design, 145 (2019) 64-75. https://doi.org/10.1016/j.cherd.2019.03.003 [CrossRef] [Google Scholar]
- P. V. Chai, E. Mahmoudi, Y. H. Teow, & A. W. Mohammad, Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. Journal of Water Process Engineering, 15 (2017) 83-88. https://doi.org/10.1016/j.jwpe.2016.06.001 [CrossRef] [Google Scholar]
- P. V. Chai, E. Mahmoudi, A. W. Mohammad, & P. Y. Choy, Iron oxide decorated graphene oxide embedded polysulfone mixed-matrix membrane: Comparison of different types mixed-matrix membranes on antifouling and performance. IOP Conf Ser Earth Environ Sci (Institute of Physics Publishing, 2020). https://doi.org/10.1088/1755-1315/463/1/012174 [PubMed] [Google Scholar]
- S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, & H. Zangeneh, Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453 (2014) 292-301. https://doi.org/https://doi.org/10.1016/j.memsci.2013.10.070 [CrossRef] [Google Scholar]
- N. Ghaemi, S. S. Madaeni, P. Daraei, H. Rajabi, S. Zinadini, A. Alizadeh, R. Heydari, M. Beygzadeh, & S. Ghouzivand, Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles. Chemical Engineering Journal, 263 (2015) 101-112. https://doi.org/10.1016/j.cej.2014.10.103 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.