Open Access
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
Article Number 01029
Number of page(s) 12
Published online 05 July 2024
  • Pourzand, A., Fakhree, M. B., Hashemzadeh, S., Halimi, M., & Daryani, A. (2011). Hormone Receptor Status in Breast Cancer and its Relation to Age and Other Prognostic Factors. Breast Cancer: Basic and Clinical Research, 87-92. [Google Scholar]
  • Verkooijen, H. M., Chappuis, P. O., Rapiti, E., Vlastos, G., Fioretta, G., Sarp, S., Sappino, A.P., Schubert, H., and Bouchardy, C. (2006). Impact of Familial Risk Factors on Management and Survival of Early-Onset Breast Cancer: a Population-Based Study. British Journal of Cancer, 231-238. [CrossRef] [PubMed] [Google Scholar]
  • Houssami, N., Ciatto, S., Martinelli, F., Bonardi, R., & Duffy, S. W. (2009). Early Detection of Second Breast Cancers Improves Prognosis in Breast Cancer Survivors. Annals of Oncology, 1505-1510. [CrossRef] [PubMed] [Google Scholar]
  • Muhartono, Ramanisa, S., Mutiara, H., & Riduan, R. J. (2016). Hubungan Antara Status Reseptor Estrogen, Reseptor Progesteron dan Human Epidermal Growth Factor Receptor 2 dengan Derajat Keganasan Karsinoma Payudara Invasif. Majalah Kedokteran Andalas, 65-72. [Google Scholar]
  • Dunnwald, L.K., Rossing, M.A., and Li, C.I. (2007). Hormone Receptor Status, Tumor Characteristics, and Prognosis: a Prospective Cohort of Breast Cancer Patients. Breast Cancer Res. 9(1), 1-10. [CrossRef] [Google Scholar]
  • Seshadri, R., Firgaira, F.A., Horsfall, D.J., McCaul, K., Setlur, V., and Kitchen, P. (1993). Clinical Significance of HER-2/Neu Oncogene Amplification in Primary Breast Cancer. The South Australian Breast Cancer Group. J. Clin. Oncol. 11(10), 1936-42. [Google Scholar]
  • Kurniawan, M. F., & Ivandri. (2017). Komparasi Algoritma Data Mining untuk Klasifikasi Penyakit Kanker Payudara. IC-Tech, 1-8. [Google Scholar]
  • Chawla, N.V., Lazarevic, A., Hall, L.O., and Bowyer, K.W. (2003). SMOTEBoost: Improving Prediction of The Minority Class in Boosting. European Conference on Principles of Data Mining and Knowledge Discovery, 107-119. [Google Scholar]
  • Fausett, L. (1994). Fundamentals of Neural Netwroks Architectures, Algorithms, and Applications. London: Prentice Hall, Inc. [Google Scholar]
  • Hamamoto, Y., Uchimura, S., Tomita, S. (1997). A Bootstrap Technique for Nearest Neighbor Clasifier Design. IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 19, no. 1, pp. 73-79. [Google Scholar]
  • Alpaydin, E. (1997). Voting over multiple condensed nearest neighbors, Artificial Intelligence Review, 11, pp. 115-132. [CrossRef] [Google Scholar]
  • Prasetyo, E. (2012). Data Mining Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta: Andi Yogyakarta. [Google Scholar]
  • Lopes, N., & Ribeiro, B. (2015). On the Impact of Distance Metrics in Instance-Based Learning Algorithms. Iberian Conference on Pattern Recognition and Image Analysis (pp. 48-56). Springer. [Google Scholar]
  • Bobrowski, L., & Topczewska, M. (2004). Improving the K-NN Classification with the Euclidean Distance Through Linear Data Transformations. Industrial Conference on Data Mining (pp. 23-32). Springer. [Google Scholar]
  • Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining Practical Machine Learning Tools and Techniques (3rd ed). USA: Elsevier. [Google Scholar]
  • Erke, A. R., & Pattynama, P. M. (1998). Receiver Operating Characteristic (ROC) Analysis: Basic Principles and Aplications in Radiology. European Journal of Radiology, 88-94. [PubMed] [Google Scholar]
  • Chou, S., Shan, J., Guo, Y., & Zhang, L. (2010). Automated Breast Cancer Detection and Classification Using Ultrasound Image: A Survey. Pattern Recognition, 299-317. [Google Scholar]
  • Zweig, M. H., & Campbell, G. (1993). Receiver Operating Characteristic (ROC) Plots : A Fundamental Evaluation Clinical Medicine. Clinical Chemistry, 561-577. [CrossRef] [PubMed] [Google Scholar]
  • Bekkar, M., Djemaa, H., & Alitouche, T. (2013). Evaluation Measures for Models Assesment Over mbalanced Data Sets. Journal of Information Engginering and Application, 3(10), 1-13. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.