Open Access
Issue
BIO Web Conf.
Volume 118, 2024
III International Scientific and Practical Conference “Concept of Sustainable Development: Agriculture and Environment” (TAEE-III-2024)
Article Number 01003
Number of page(s) 9
Section Agricultural Issues
DOI https://doi.org/10.1051/bioconf/202411801003
Published online 12 July 2024
  • J. You, X. Li, M. Low, “Deep gaussian process for crop yield prediction based on remote sensing data”, In Thirty-First AAAI Conf.on Artificial Intel, 4559–4566 (2017) [Google Scholar]
  • S.H. Lee, C.S. Chan, S.J. Mayo, How deep learning extracts and learns leaf features for plant classification, Pattern Recogn, 71, 1–13 (2017) [CrossRef] [Google Scholar]
  • S.A. Tsaftaris, M. Minervini, H. Scharr, Machine learning for plant phenotyping needs image processing, Trends Plant Sci., 21, 12, 989–91 (2016) [CrossRef] [Google Scholar]
  • A. Fuentes, S. Yoon, D.S. Park, Deep learning-based techniques for plant diseases recognition in real-field scenarios, In: Advanced concepts for intelligent vision systems (2020) [Google Scholar]
  • D. Yang, S. Li, Z. Wang, MF-CNN: traffic flow prediction using convolutional neural network and multi-features fusion, IEICE Trans Inf Syst, 102, 8, 1526–36 (2019) [CrossRef] [Google Scholar]
  • S.K. Sundararajan, B. Sankaragomathi, D.S. Priya, Deep belief cnn feature representation based content based image retrieval for medical images, J.Med Syst, 43, 6, 1–9 (2019) [CrossRef] [Google Scholar]
  • P. Melnyk, Z. You, K. Li, A high-performance CNN method for offline handwritten chinese character recognition and visualization, Soft Comput, 24, 7977–87 (2019) [Google Scholar]
  • J. Li, Y. Mi, Z. Ju, CNN-based facial expression recognition from annotated rgb-d images for human–robot interaction, Int J Humanoid Robot, 16, 04, 504–5 (2019) [Google Scholar]
  • G.E. Hinton, R. Salahutdinov, Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504–7 (2006) [NASA ADS] [CrossRef] [Google Scholar]
  • W. Liu, Z. Wang, X. Liu, A survey of deep neural network architectures and their applications, Neurocomputing, 234, 11–26 (2017) [CrossRef] [Google Scholar]
  • R. Fergus, Deep learning methods for vision, CVPR 2012 Tutorial, www.cs.toronto.edu/-ranzato [Google Scholar]
  • Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives, IEEE Trans Pattern Anal Mach Intell, 35, 8, 1798–828 (2013) [CrossRef] [PubMed] [Google Scholar]
  • B.R. Sabitov, S. Biibsunova, A. Kashkaroeva, Deep learning Methods for Recognition of Orchard Crops, IJCSNS, 22, 10 (2022) https://doi.org/10.22937/IJCSNS.2022.22.10.33 [Google Scholar]
  • B. Biibosunov, B.R. Sabitov, S. Biibosunova, Machine learning for crop yield forecasting, Cybernetics and Physics, 12, 3 (2023) [Google Scholar]
  • B.R. Sabitov, A.D. Kartanova, K. Talant uulu, N.S. Seitkazieva, Modeling and forecasting tasks of agriculture based on machine learning, E3S Web Conf., 380, 15 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.