Open Access
Issue
BIO Web Conf.
Volume 118, 2024
III International Scientific and Practical Conference “Concept of Sustainable Development: Agriculture and Environment” (TAEE-III-2024)
Article Number 01031
Number of page(s) 8
Section Agricultural Issues
DOI https://doi.org/10.1051/bioconf/202411801031
Published online 12 July 2024
  • Y. Lei, L. Carlucci, H. Rijnaarts, A. Langenhoff. Phytoremediation of micropollutants by Phragmites australis, Typha angustifolia, and Juncus effuses. International Journal of Phytoremediation, 25, 1, 82-88 (2023) doi: 10.1080/15226514.2022.2057422 [CrossRef] [PubMed] [Google Scholar]
  • M.A. Latina, E.N. Farnosova, Technical and economic analysis of mine water treatment methods. Advances in chemistry and chemical technology, 31, 5, 186, 70-72 (2017) [Google Scholar]
  • A.F. Kamenets, Assessment of the possibility of using common reed (Phragmites australis) and broadleaf cattail (Typha latifolia L.) for phytoremediation of Mn 2+ ions from wastewater. Approbation, 12, 51, 10-13 (2016) [Google Scholar]
  • N. Gonzalez-Ipia, K.C. Bolanos-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo, Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: A promissory application to mining wastewater treatment. Journal of Environmental Chemical Engineering, 8, 5, 104336 (2020) (doi.org/10.1016/j.jece.2020.104336). [CrossRef] [Google Scholar]
  • N.S. Pote, Water treatment and management techniques in mines. International journal of engineering sciences & research technology, 6, 4, 178-191 (2017) doi: 10.5281/zenodo.557144 [Google Scholar]
  • S.M. Samaei, S. Gato-Trinidad, A. Altaee, Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: case study of costerfield mining operations Victoria, Australia, Journal of Water Process, Engineering, 34, 101116 (2020) doi.org/10.1016/j.jwpe.2019.101116 [CrossRef] [Google Scholar]
  • J.O. Ighalo, S.B. Kurniawan, K.O. Iwuozor, C.O. Aniagor, O.J. Ajala, S.N. Oba, F.U. Iwuchukwu, S. Ahmadi, C.A. Igwegbe, A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD), Process Safety and Environmental Protection, 157, 37-58 (2022) doi.org/10.1016/j.psep.2021.11.008 [CrossRef] [Google Scholar]
  • S. Rezania, J. Park, P.F. Rupani, N. Darajeh, X., Xu R. Shahrokhishahraki. Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview, Environmental science and pollution research international, 26, 8, 7428-7441 (2019) doi: 10.1007/s11356-019-04300-4) [CrossRef] [PubMed] [Google Scholar]
  • A.O. Bello, B.S. Tawabini, A.B. Khalil, C.R. Boland, T.A. Saleh, Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems, Ecological Engineering, 120, 126-133 (2018) doi.org/10.1016/j.ecoleng.2018.05.035 [CrossRef] [Google Scholar]
  • V.K. Tokhtar, M.Yu. Tretiakov, V.N. Zelenkova, T.V. Petrunova, Assessment of the phytoremediation potential of aquatic plants of the Belgorod region for wastewater treatment. International Journal of Ecosystems and Ecology Science, 12, 1, 207-216 (2022) doi.org/10.31407/ijees12.1 [CrossRef] [Google Scholar]
  • V.K. Tokhtar, M.Yu. Tretyakov, V.N. Zelenkova, D.V. Biryukov, Evaluation of the impact of technogenically polluted wastewater on the morphological and physiological parameters of phytoremediants in combination with various types of microorganisms. E3S Web Conf., 411, 02015 (2023) doi: 10.1051/e3sconf/202341102015 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • L.A. Tokhtar, Z.A. Borodayeva, V.K. Tokhtar, S.V. Kulko, N.N. Tkachenko, The creation of biotechnological plant collections in the botanical gardens of Russia as one of the promising directions for the conservation of the biological diversity of living systems. development, Plant Cell Biotechnology and Molecular Biology, 21, 21-22, 21-27 (2020) [Google Scholar]
  • M.Yu. Tretyakov, V.K. Tokhtar, E.V. Zhuravleva, D.V. Biryukov, Assessment of the accuracy of phenotyping morphological characters of Syringa vulgaris L. using a PlantEye F500 3D laser scanner depending on the location of plants on the scanned surface. Agricultural Biology, 57, 5, 921-932 (2022) doi: 10.15389/agrobiology.2022.5.921rus [Google Scholar]
  • G. Cordon, M.G. Lagorio, J.M. Paruelo, Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. Journal of Plant Physiology, 199, 100-110 (2016) doi: 10.1016/j.jplph.2016.05.010 [CrossRef] [PubMed] [Google Scholar]
  • J. Penuelas, J.A. Gamon, A.L. Fredeen, J. Merino, C.B. Field, Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves, Remote Sensing of Environment, 48, 135-146 (1994) doi.org/10.1016/0034-4257(94)90136-8 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.