Open Access
Issue
BIO Web Conf.
Volume 122, 2024
2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE 2024)
Article Number 01022
Number of page(s) 14
DOI https://doi.org/10.1051/bioconf/202412201022
Published online 17 July 2024
  • “OECD-FAO Agricultural Outlook 2023-2032”, OECD/FAO 2023, https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2023-2032_08801ab7-en. [Google Scholar]
  • L. C. F. Bustillo, M. Mehrvar, Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of environmental management. 161 (2015). [Google Scholar]
  • O. Tirtoaca, M. P. Lehadus, V. Nedeff, I. Sandu, C. Tomozei, V. V. Cretu, A. V. Sandu, Experimental Results Regarding the Groundwater Quality in Bacau City, Romania. Revista de Chimie. 70 (2019). [Google Scholar]
  • O. T. Irimia, C. Tomozei, M. Panainte, E. F. Mosnegutu, N. Barsan, Efficiency of filters with different filtering materials: comparative study in water treatment. Environmental Engineering & Management Journal, 12 (2013). [Google Scholar]
  • K. V. Naderi, C. F. Bustillo-Lecompte, M. Mehrvar, M. J. Abdekhodaie, Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater. Journal of Environmental Science and Health, Part B. 52, 5 (2017). [Google Scholar]
  • N. Barsan, D. Chitimus, F. M. Nedeff, I. Sandu, M. Panainte Lehadus, A. V. Sandu, O. I. Tartoaca, Experimental Application of a Laboratory SBR Plant Used for Domestic Wastewater Treatment. REV.CHIM.(Bucharest). 70, 11 (2019). [Google Scholar]
  • M. Philipp, K. J. Masmoudi, J. Wellmann, H. Akrout, L. Bousselmi, S.U. Geißen, Slaughterhouse Wastewater Treatment: A Review on Recycling and Reuse Possibilities. Water. 13, 3175 (2021). [CrossRef] [Google Scholar]
  • H. Filali, N. Barsan, G. Hörmann, V. Nedeff, O. Irimia, F. Nedeff, M. Hachicha, Greywater vertical treatment and possibility of reuse in the fields from peri-urban area, Agronomy. 13, 3, 940 (2023). [CrossRef] [Google Scholar]
  • A. Cochiorca, N. Barsan, F. M. Nedeff, I. Sandu, E. F. Mosnegutu, M Panainte Lehadus, D. Chitimus, O. Irimia, I. G. Sandu, Surface water quality assessment from a mining area case study, Groapa Burlacu lake, Targu Ocna, Romania. REV.CHIM.(Bucharest), 70, 10 (2019). [Google Scholar]
  • EC 2021, EU agricultural outlook for markeST, income and environment, 2021-2031. European Commission, DG Agriculture and Rural Development, Brussels. [Google Scholar]
  • M. Barrera, M. Mehrvar, K. A. Gilbride, L. H. McCarthy, A. E. Laursen, V. Bostan, R. Pushchak, Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater, Chemical Engineering Research and Design. 90, 9 (2012). [Google Scholar]
  • G. S. Giner, P. Karlis, Developing EU environmental standards for the food, drink and milk industries: key environmental issues and data collection. Environmental Sciences Europe. 32 (2020). [Google Scholar]
  • V. P. Ngobeni, B. Moses, T. Andile, Treatment of poultry slaughterhouse wastewater using electrocoagulation: a review. Water Practice and Technology. 17 (2022). [Google Scholar]
  • S. Ioannis, A. D. Ladas, Meat waste treatment methods and potential uses. International Journal of Food Science and Technology. 43 (2008). [Google Scholar]
  • R. T. Hilares, D. F. Atoche-Garay, D. A. P. Pagaza, M. A. Ahmed, G. J. C. Andrade, J. C. Santos, Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review. Journal of Environmental Chemical Engineering. 9, 2, 105174 (2021). [CrossRef] [Google Scholar]
  • C. P. Chávez, R. L. Castillo, L. Dendooven, E.M. Escamilla-Silva, Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor, Bioresource Technology. 96, 15) (2005). [Google Scholar]
  • S. Keskes, F. Hmaied, H. Gannoun, H. Bouallagui, J. J. Godon, M. Hamdi, Performance of a submerged membrane bioreactor for the aerobic treatment of abattoir wastewater. Bioresource Technology, 103, 1 (2012). [Google Scholar]
  • K. Meiramkulova, A. Temirbekova, G. Saspugayeva, A. Kydyrbekova, D. Devrishov, Z. Tulegenova, K. Aubakirova, N. Kovalchuk, A. Meirbekov, T. Mkilima, Performance of a Combined Treatment Approach on the Elimination of Microbes from Poultry Slaughterhouse Wastewater. Sustainability. 13, 3467 (2021). [CrossRef] [Google Scholar]
  • F. Fatima, H. Du, R.R. Kommalapati, Treatment of Poultry Slaughterhouse Wastewater with Membrane Technologies: A Review. Water, 13, 1905 (2021). [CrossRef] [Google Scholar]
  • E. Debik, T. Coskun, Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresource Technology. 100, 11 (2009). [Google Scholar]
  • R. B. Bakar, M. Radin, A. Adel, A. A. Hamidi, Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology. 42, 6 (2021). [Google Scholar]
  • A. K. dos Santos Pereira, K. C. Teixeira, D. H. Pereira, G. S. Cavallini, A critical review on slaughterhouse wastewater: Treatment methods and reuse possibilities. Journal of Water Process Engineering. 58, 104819 (2024). [CrossRef] [Google Scholar]
  • Y. Williams, M. Basitere, S. K. O. Ntwampe, M. Ngongang, M. Njoya, E. Kaskote, Application of response surface methodology to optimize the COD removal efficiency of an EGSB reactor treating poultry slaughterhouse wastewater. Water Practice and Technology, 14, 3 (2019). [Google Scholar]
  • D.I. Massé, L. Masse, Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Canadian Agricultural Engineering. 42, 3 (2000). [Google Scholar]
  • C. J. Teo, E. Karkou, O. Vlad, A. Vyrkou, N. Savvakis, G. Arampatzis, A. Angelis-Dimakis, Life cycle environmental impact assessment of slaughterhouse wastewater treatment, Chemical Engineering Research and Design. 200 (2023). [Google Scholar]
  • I.R. de Nardi, T.P. Fuzi, V. Del Nery, Performance evaluation and operating strategies of dissolved-air flotation system treating poultry slaughterhouse wastewater. Resources, Conservation and Recycling. 52, 3 (2008). [Google Scholar]
  • C. Dlangamandla, S.K.O. Ntwampe, M. Basitere, A bioflocculant-supported dissolved air flotation system for the removal of suspended solids, lipids and protein matter from poultry slaughterhouse wastewater. Water Sci Technol. 78, 1–2 (2018). [Google Scholar]
  • Y. A. Ramesh, M. N. Heather, K. S. Rakesh, Recycling of poultry process wastewater by ultrafiltration. Innovative Food Science and Emerging Technologies. 10, 1 (2009). [CrossRef] [Google Scholar]
  • M. Racar, D. Dolar, A. Špehar, K. Košutić, Application of UF/NF/RO membranes for treatment and reuse of rendering plant wastewater. Process Safety and Environmental Protection 105 (2004). [Google Scholar]
  • A. Y. Maizatul, R. M. S. R. Mohamed, A. A. S. Al-Gheethi, A. H. M. Kassim, Characteristics of Chicken Slaughterhouse Wastewater, Chemical Engineering Transactions, 63 (2018). [Google Scholar]
  • Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on minimum requirements for water reuse, https://eur-lex.europa.eu/legalcontent/RO/TXT/?uri=celex%3A32020R0741, accessed on the date of 07.03.2024. [Google Scholar]
  • B-L. Ciro, M., Mehrab, Slaugterhouse Wastewater: Treatment, “Management and Resourse Recovery. Physico-Chimical Wastewater Treatment and Resoursce Recovery. 153–174 (2017). [Google Scholar]
  • E. Carré, J. Beigbeder, V. Jauzein, G. Junqua, M. Lopez‐Ferber, Life cycle assessment case study: Tertiary treatment process options for wastewater reuse. Integrated Environmental Assessment and Management. 13 (2017). [Google Scholar]
  • G.E. Üstün, S.K.A. Solmaz, F. Çiner, H.S. Bažkaya, Tertiary treatment of a secondary effluent by the coupling of coagulation–flocculation–disinfection for irrigation reuse. Desalination. 277 (2011). [Google Scholar]
  • E.E. Obotey, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review. 10, 1–28, (2020). [Google Scholar]
  • P. Sharma, D. Dutta, A. Udayan, S. Kumar, Industrial wastewater treatment: Current trends, bottlenecks, and best practices, Chemosphere. 285 (2021). [Google Scholar]
  • B. Keskin, M. E. Ersahin, H. Ozgun, I. Koyuncu, Pilot and full-scale applicationsof membrane processes for textile wastewater treatment: A critical review. Journal of Water Process Engineering. 42 (2021). [Google Scholar]
  • S.A.M. Noor, Z.Z. Noora, A.A.H. Mohd, O. Gustaf, Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination. 305 (2012). [Google Scholar]
  • N.A. Sabri, S. van Holsta, H. Schmitt, B.M. Van der Zaan, H.W. Gerritsen, H.H.M. Rijnaarts, A.A.M. Langenhoff, Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Science of The Total Environment. 721 (2020). [Google Scholar]
  • L.H. Andrade, F.D.S. Mendes, J.C. Espindola, M.C.S. Amaral, Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Separation and Purification Technology. 126 (2014). [Google Scholar]
  • S. L. Marco, A.P. José, A. Carlos, P.R. Lucía, I.M. Manuel, M. Sixto, Tertiary treatment of pulp mill wastewater by solar Photo-Fenton. Journal of Hazardous Materials 225-226 (2012). [Google Scholar]
  • P. Ranjit, V. Jhansi, K.V. Reddy, Conventional Wastewater Treatment Processes. Advances in the Domain of Environmental Biotechnology. 1 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.