Open Access
Issue
BIO Web Conf.
Volume 122, 2024
2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE 2024)
Article Number 01026
Number of page(s) 13
DOI https://doi.org/10.1051/bioconf/202412201026
Published online 17 July 2024
  • H. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification, Applied Catalysis A: General, 221, 1 (2001). [Google Scholar]
  • N. Kumar, S. Varun, R. Chauhan, Performance and emission characteristics of biodiesel from different origins: A review, Renewable and Sustainable Energy Reviews, 21 (2013). [Google Scholar]
  • I. M. Atadashi, M. K. Aroua, A. A. Aziz, High quality biodiesel and its diesel engine application: A review, Renewable and Sustainable Energy Reviews, 14, 7 (2010). [Google Scholar]
  • A. E. Atabani, A.S. Silitonga, I. Badruddin, T. M. I. Mahlia, H. H. Masjuki, S. Mekhilef, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Reviews, 16, 4 (2012). [Google Scholar]
  • S. P. Singh, D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review, Renewable and Sustainable Energy Reviews, 14, 1 (2010). [CrossRef] [Google Scholar]
  • H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, Life cycle cost and sensitivity analysis of palm biodiesel production, Fuel, 98 (2012). [Google Scholar]
  • F. Goembira, K. Matsuura, S. Saka, Biodiesel production from rapeseed oil by various supercritical carboxylate esters, Fuel, 97 (2012). [Google Scholar]
  • H.-Y. Shin, S.-K. Lim, S. C. Kang, S. Y. Bae, Statistical optimization for biodiesel production from rapeseed oil via transesterificaion in supercritical methanol, Fuel Processing Technology, 98 (2012). [Google Scholar]
  • B. Wang, S. Li, S. Tian, R. Feng, Y. Meng, A new solid base catalyst for the transesterification of rapeseed oil to biodiesel with methanol, Fuel, 104 (2013). [Google Scholar]
  • F. Qiu, Y. Li, D. Yang, X. Li, P. Sun, Biodiesel production from mixed soybean oil and rapeseed oil, Applied Energy, 88, 6 (2011). [Google Scholar]
  • J.-Z. Yin, M. Xiao, A.-Q. Wang, Z.-L. Xiu, Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol, Energy Conversion and Management, 49, 12 (2008). [Google Scholar]
  • E. M. Santos, N. D. Piovesan, E. G. de Barros, M. A. Moreira, Low linolenic soybeans for biodiesel: Characteristics, performance and advantages, Fuel, 104 (2013). [Google Scholar]
  • C.E. Papadopoulos, A. Lazaridou, A. Koutsoumba, N. Kokkinos, A. Christoforidis, N. Nikolaou, Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation, Bioresource Technology, 101, 6 (2010). [CrossRef] [PubMed] [Google Scholar]
  • M. N. Nabi, M. M. Rahman, M. S. Akhter, Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions, Applied Thermal Engineering, 29, 1112 (2009). [Google Scholar]
  • S. Mekhilef, S. Siga, R. Saidur, A review on palm oil biodiesel as a source of renewable fuel, Renewable and Sustainable Energy Reviews, 15, 4 (2011). [Google Scholar]
  • A. Hayyan, M. Z. Alam, M. E. S. Mirghani, N. A. Kabbashi, N. I. N. Mohd Hakimi, Y. M. Siran, S. Tahiruddin, Sludge palm oil as a renewable raw material for biodiesel production by two-step processes, Bioresource Technology, 101, 20 (2010). [Google Scholar]
  • G. A. Pereyra-Irujo, N. G. Izquierdo, M. Covi, S. M. Nolasco, F. Quiroz, L. A. N. Aguirrezabal, Variability in sunflower oil quality for biodiesel production: A simulation study, Biomass and Bioenergy, 33, 3 (2009). [Google Scholar]
  • Dj. Vujicic, D. Comic, A. Zarubica, R. Micic, G. Boskovic, Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst, Fuel, 89, 8 (2010). [Google Scholar]
  • M. M. Gui, K. T. Lee, S. Bhatia, Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock, Energy, 33, 11 (2008). [Google Scholar]
  • A. Talebian-Kiakalaieh, N. A. S. Amin, H. Mazaheri, A review on novel processes of biodiesel production from waste cooking oil, Applied Energy, 104 (2013). [Google Scholar]
  • Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, K. Sopian, Overview of the production of biodiesel from Waste cooking oil, Renewable and Sustainable Energy Reviews, 18 (2013). [Google Scholar]
  • B. H. Diya’uddeen, Performance evaluation of biodiesel from used domestic waste oils: A review, Process Safety and Environmental Protection, 90, 3 (2012). [Google Scholar]
  • M. K. Lam, K. T. Lee, A. R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review, Biotechnology Advances, 28, 4 (2010). [Google Scholar]
  • C.-H. Su, Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production, Applied Energy, 104 (2013). [PubMed] [Google Scholar]
  • M. Berrios, J. Siles, M. A., Martín, A. Martín, A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil, Fuel, 86, 15 (2007). [Google Scholar]
  • S. Chongkhong, C. Tongurai, P. Chetpattananondh, C. Bunyakan, Biodiesel production by esterification of palm fatty acid distillate, Biomass and Bioenergy, 31, 8 (2007). [Google Scholar]
  • N. U. Soriano, R. Venditty, D. Argyropoulos, Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification, Fuel, 88, 3 (2009). [Google Scholar]
  • M. C. De Jong, R. Feijt, E. Zondervan, T. A. Nijhuis, A. B. de Haan, Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst, Applied Catalysis A: General, 365, 1 (2009). [Google Scholar]
  • Y. Wang, S. Ou, P. Liu, F. Xue, S. Tang, Comparison of two different processes to synthesize biodiesel by waste cooking oil, Journal of Molecular Catalysis A: Chemical, 252, 1–2 (2006). [CrossRef] [Google Scholar]
  • B. Freedman, E. H. Pryde, T. L. Mounts, Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils, JAOCS, 61, 10 (1984). [CrossRef] [Google Scholar]
  • J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality, Fuel, 87, 17–18 (2008). [Google Scholar]
  • M. K. Aroua, A. R. Abdul Aziz, N. M. N. Sulaiman, The effects of catalysts in biodiesel production: A review, Journal of Industrial and Engineering Chemistry, 19, 1 (2013). [CrossRef] [Google Scholar]
  • D. Y. C. Leung, X. Wu, M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy, 87, 4 (2010). [Google Scholar]
  • E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin Jr., Synthesis of Biodiesel via Acid Catalysis, Industrial & Engineering Chemistry Research, 44 (2005). [Google Scholar]
  • K. Ramezani, S. Rowshanzamir, M. H. Eikani, Castor oil transesterification reaction: A kinetic study and optimization of parameters, Energy, 35, 10 (2010). [Google Scholar]
  • D. I. Jordanov, P. S. Petkov, Y, K. Dimitrov, S. K. Ivanov, Methanol transesterification of different vegetable oils, Petroleum & Coal, 49, 2 (2007). [Google Scholar]
  • M. Canakci, J. Van Gerpen, Biodiesel Production from Oils and Fats with High Free Fatty Acids, ASAE, 42, 5 (1999). [CrossRef] [Google Scholar]
  • A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, Biodiesel production from high FFA rubber seed oil, Fuel, 84, 4 (2005). [Google Scholar]
  • V. B. Veljkovic, S. H. Lakićević, O. S. Stamenković, Z. B. Todorović, M. L. Lazić, Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids, Fuel, 85, 17–18 (2006). [Google Scholar]
  • S. V. Ghadge, H. Raheman, Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids, Biomass and Bioenergy, 28, 6 (2005). [Google Scholar]
  • V. P. Kopchev, Ph.D. thesis, University of Ruse „Angel Kanchev“, Agrarian and Industrial Faculty, Ruse (2013). [Google Scholar]
  • M. P. Dorado, E. Ballesteros, F. J. López, M. Mittelbach, Optimization of Alkali-Catalyzed Transesterification of Brassica Carinata Oil for Biodiesel Production, Energy & Fuel, 18, 1 (2004). [CrossRef] [Google Scholar]
  • F. Ferella, G. Mazziotti Di Celso, I. De Michelis, V. Stanisci, F. Vegliò, Optimization of the transesterification reaction in biodiesel production, Fuel, 89, 1 (2010). [Google Scholar]
  • D. Darnoko, M. Cheryan, Kinetics of Palm Oil Transesterification in a Batch Reactor, JAOCS, 77, 12 (2000). [Google Scholar]
  • V. S. Videva, S. G. Bairyamov, I. T. Devedjiev, Model of a biochemical reaction to obtain esters of natural amino acids, Bulgarian Chemical Communications, 39, 4 (2007). [Google Scholar]
  • I. T. Devedjiev, S. G. Bairyamov and V. S. Videva, Biomimetic Synthesis of Esters of Natural Amino Acids. Heteroatom Chemistry, 19, 3 (2008). [Google Scholar]
  • S. G. Bayryamov, A Novel General Methodology for Ribozyme-Mimetic Synthesis of Methyl Esters of Various Natural Amino Acids, Simulating the Prebiotic Biomolecule Creation. Journal of Chemical Engineering & Process Technology (JCEPT), 6, 5 (2015). [Google Scholar]
  • S. G. Bayryamov, An efficient ribozyme mimetic synthesis of methyl esters of various natural amino acids. In Proceedings of the University of Ruse “Angel Kanchev”, 2010, Volume 49, Book 9.1, Chemical technologies, Academic publishing press of the University of Ruse “Angel Kanchev”, Ruse (2010). [Google Scholar]
  • S. G. Bayryamov, N. G. Vassilev and D. D. Petkov, The Two Pathways for Effective Orthogonal Protection of L-Ornithine, for Amino Acylation of 5’-O-Pivaloyl Nucleosides, Describe the General and Important Role for the Successful Imitation, During the Synthesis of the Model Substrates for the Ribosomal Mimic Reactions. Protein and Peptide Letters, 17, 7 (2010). [Google Scholar]
  • S. G. Bayryamov, N. G. Vassilev and D. D. Petkov, Effective Orthogonal Protection of L-Ornithine as Amino Acyl Component for Amino Acylation of 5’-O-Pivaloyl Nucleosides. Synthesis of Bz(NO2)-Orn(Boc)-OCH2CN by the Fmoc-strategy, Proceedings of the Bulgarian Academy of Sciences, 64, 2 (2011). [Google Scholar]
  • S. G. Bayryamov, N. G. Vassilev and D. D. Petkov, Effective Orthogonal Protection of L-Ornithine as Amino Acyl Component for Amino Acylation of 5’-O-Pivaloyl Nucleosides. Synthesis of Bz(NO2)-Orn(Boc)-OCH2CN by the Orthoformate strategy, Proceedings of the Bulgarian Academy of Sciences, 63, 9 (2010). [Google Scholar]
  • S. G. Bayryamov, N. G. Vassilev, and D. D. Petkov, Design and Synthesis of Two New Substrates For Model Ribosomal Reactions, Proceedings of the Bulgarian Academy of Sciences, 61, 2 (2008). [Google Scholar]
  • S. G. Bayryamov, N. G. Vassilev, M. A. Rangelov, A. P. Mladjova and D. D. Petkov, Design and Synthesis of Substrates for Model Ribosomal Reactions, Protein and Peptide Letters, 16, 4 (2009). [Google Scholar]
  • S. G. Bayryamov, Synthesis of glycine esters/amides as potential biodegradable engine oil additives, Journal of Chemical Technology and Metallurgy (JCTM), 55, 6 (2020). [Google Scholar]
  • S. G. Bayryamov, Synthesis of glycerol carbonate, trimethylol propane carbonate and tris carbonate as precursors for the preparation of biodegradable engine oil additives, In Proceedings of the University of Ruse “Angel Kanchev”, 2018, Volume 57, Book 10.1., Chemical technologies, Academic publishing press of the University of Ruse “Angel Kanchev”, Ruse (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.