Open Access
Issue |
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 15 | |
Section | Agriculture, Animal Sciences, Agroforestry, and Agromaritime Innovation | |
DOI | https://doi.org/10.1051/bioconf/202412301002 | |
Published online | 30 August 2024 |
- R. Teuber, Geographical indications of origin as a tool of product differentiation: The case of coffee, J. Int Food. Agribus. Mark. 22, 277–298 (2010). [CrossRef] [Google Scholar]
- S. Bee, C. Brando, G. Brumen, N. Carvalhes, I. Kölling-Speer, K. Speer, F. Suggi Liverani, A. Teixeira, R. Teixeira, R. Thomaziello, R. Viani, O. Vitzthum, The Raw Bean, in: A. Illy, R. Viani (Eds.), Espresso Coffee, Second Edi, (Elsevier Academic Press, 2005) [Google Scholar]
- P. Poltronieri, F. Rossi, Challenges in specialty coffee processing and quality assurance, Challenges. 7, 1–22 (2016). [CrossRef] [Google Scholar]
- G.S. Duarte, A.A. Pereira, A. Farah, Chlorogenic acids and other relevant compounds in brazilian coffees processed by semi-dry and wet post-harvesting methods, Food Chem. 118, 851-855 (2010) [CrossRef] [Google Scholar]
- J. Towaha, A. Aunillah, E.H. Purwanto, H. Supriadi, Pengaruh elevasi dan pengolahan terhadap kandungan kimia dan citarasa kopi robusta Lampung, JTIDP. 1, 57-62 (2014) [CrossRef] [Google Scholar]
- I. Sulaiman, N.M. Erfiza, R. Moulana, Effect of fermentation media on the quality of arabica wine coffee, in Proceedings of the IOP-2021 conference, Earth and Environmental Science, Phuket, Thailand, October 18-21 (2021), 012027. [CrossRef] [Google Scholar]
- M.B. dos S. Scholz, S.H. Prudencio, C.S.G. Kitzberger, R.S. dos S.F. da Silva, Physico-chemical characteristics and sensory attributes of coffee beans submitted to two post-harvest processes, J. Food Meas. Charact. 13, 831-839 (2019) [CrossRef] [Google Scholar]
- F.T. Tadesse, Y. Jemal, H. Abebe, Effect of green coffee processing methods and roasting temperatures on physical and cup quality of sidama coffee, Southern Ethiopia, J. Nutr. Ecol. Food Res. 3, 1-7 (2015) [Google Scholar]
- J.R. Sanz-Uribe, Yusianto, S.N. Menon, A. Peñuela, C. Oliveros, J. Husson, C. Brando, A. Rodriguez, Postharvest processing-revealing the green bean, (The Craft and Science of Coffee, Academic Press, 2017). [Google Scholar]
- F. de Bruyn, S.J. Zhang, V. Pothakos, J. Torres, C. Lambot, A. V. Moroni, M. Callanan, W. Sybesma, S. Weckx, L. de Vuyst, Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production, Appl. Environ. Microbiol. 83, 1-16 (2017) [CrossRef] [Google Scholar]
- Y. Hamdouche, J.C. Meile, D.N. Nganou, N. Durand, C. Teyssier, D. Montet, Discrimination of post-harvest coffee processing methods by microbial ecology analyses, Food Control. 65, 112-120 (2016) [CrossRef] [Google Scholar]
- X. Shen, C. Zi, Y. Yang, Q. Wang, Z. Zhang, J. Shao, P. Zhao, K. Liu, X. Li, J. Fan, Effects of different primary processing methods on the flavor of coffea arabica beans by metabolomics, Fermentation. 9, 1-18 (2023) [Google Scholar]
- O. Gonzalez-Rios, M.L. Suarez-Quiroz, R. Boulanger, M. Barel, B. Guyot, J.P. Guiraud, S. Schorr-Galindo, Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee, J. Food Compos. Anal. 20, 297-307 (2007) [CrossRef] [Google Scholar]
- B. Mulyara, Y. Rahmadian, Non-volatile compounds of unwashed Gayo arabica coffee (Coffea arabica) with anaerobic fermentation process, in Proceedings of the IOP-2021 conference, Earth and Environmental Science, Surakarta, Indonesia, September 29-30, September 29-30 (2020), 012022. [Google Scholar]
- A. Hetzel, Fine robusta standards and protocols: A compilation of technical standards, evaluation procedures and reference materials for quality-differentiated robusta coffee, 1st ed, (Coffee Quality Institute, California, USA, 2015) [Google Scholar]
- F. Kulapichitr, C. Borompichaichartkul, I. Suppavorasatit, K.R. Cadwallader, Impact of drying process on chemical composition and key aroma components of arabica coffee, Food Chem. 291, 49-58 (2019) [CrossRef] [Google Scholar]
- D. Herawati, P.E. Giriwono, F. Nur, A. Dewi, T. Kashiwagi, N. Andarwulan, Critical roasting level determines bioactive content and antioxidant activity of robusta coffee beans, Food Sci. Biotechnol. 28, 7-14 (2018) [Google Scholar]
- E.A. Ongo, G. Montevecchi, A. Antonelli, V. Sberveglieri, F. Sevilla, Metabolomics fingerprint of Philippine coffee by SPME-GC-MS for geographical and varietal classification, Food Res. Int. 134, 109227 (2020). [CrossRef] [Google Scholar]
- D. Herawati, P.E. Giriwono, F.N.A. Dewi, T. Kashiwagi, N. Andarwulan, Three major compounds showing significant antioxidative, α-glucosidase inhibition, and antiglycation activities in robusta coffee brew, Int. J. Food Prop. 22, 994-1010 (2019) [CrossRef] [Google Scholar]
- A. Senizza, G. Rocchetti, M.L. Callegari, L. Lucini, L. Morelli, Linoleic acid induces metabolic stress in the intestinal microorganism bifidobacterium breve DSM 20213, Sci Rep. 10, 1-11 (2020) [CrossRef] [Google Scholar]
- Zakidou, F. Plati, A. Matsakidou, E.M. Varka, G. Blekas, A. Paraskevopoulou, Single origin coffee aroma: From optimized flavor protocols and coffee customization, Molecules. 26, 2-17 (2021) [Google Scholar]
- Galarza, J.G. Figueroa, Volatile compound characterization of coffee (Coffea arabica) processed at different fermentation times using SPME-GC-MS, Molecules. 27, 1-15 (2022) [Google Scholar]
- J. Zhang, F. De Bruyn, V. Pothakos, G.F. Contreras, Z. Cai, C. Moccand, S. Weckx, L. De Vuyst, Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing, Front. Microbiol. 10, 1-24 (2019) [CrossRef] [Google Scholar]
- Haile, W.H. Kang, The role of microbes in coffee fermentation and their impact on coffee quality, J. Food Qual. 2019, 1-6 (2019) [CrossRef] [Google Scholar]
- Elhalis, J. Cox, D. Frank, J. Zhao, The role of wet fermentation in enhancing coffee flavor, aroma and sensory quality, Eur. Food Res. Technol. 247, 485-498 (2021) [CrossRef] [Google Scholar]
- E. Poyraz, N. Öztürk, H.T. Kıyan, B. Demirci, Volatile compounds of Coffea arabica L. green and roasted beans, Anadolu Univ. J. Sci. Technol.-C-Life. Sci. Biotech. 5, 31-35 (2016) [Google Scholar]
- Perez, M.S. Calderon, D.E. Bustamante, A.C. Caetano, J.E. Mendoza, S.L.J. Fernandez-Güimac, Variability of volatile compound profiles during two coffee fermentation times in northern Peru using SPME-GC/MS, Braz. J. Food Technol. 26, 1-14 (2023) [CrossRef] [Google Scholar]
- Cascos, J. Lozano, I. Montero-Fernández, J.A. Marcía-Fuentes, R.S. Aleman, A. Ruiz-Canales, D. Martín-Vertedor, Electronic nose and gas chromatograph devices for the evaluation of the sensory quality of green coffee beans, Foods. 13, 1-13 (2024) [Google Scholar]
- Miao, Q. Zou, Q. Wang, J. Gong, C. Tan, C. Peng, C. Zhao, Z. Li, Evaluation of the physiochemical and metabolite of different region coffee beans by using UHPLC- QE-MS untargeted-metabonomics approaches, Food Biosci. 46, 1-39 (2022) [Google Scholar]
- F. Mathieu, C. Malosse, B. Frérot, Identification of the volatile components released by fresh coffee berries at different stages of ripeness, J. Agric. Food Chem. 46, 1106-1110 (1998). [CrossRef] [Google Scholar]
- S.C. Frost, P. Walker, C.M. Orians, A. Robbat, The chemistry of green and roasted coffee by selectable 1D/2D gas chromatography mass spectrometry with spectral deconvolution, Molecules. 27, 1-19 (2022) [Google Scholar]
- T. Dippong, M. Dan, M.H. Kovacs, E.D. Kovacs, E.A. Levei, O. Cadar, Analysis of volatile compounds, composition, and thermal behavior of coffee beans according to variety and roasting intensity, Foods. 11, 1-15 (2022) [Google Scholar]
- F. Vezzulli, M. Lambri, T. Bertuzzi, Volatile compounds in green and roasted arabica specialty coffee: Discrimination of origins, post-harvesting processes, and roasting level, Foods. 12, 1-14 (2023) [Google Scholar]
- A.T. Toci, A. Farah, Volatile compounds as potential defective coffee beans’ markers, Food Chem. 108, 1133-1141 (2008) [CrossRef] [Google Scholar]
- P.A. Dionísio, G. Molina, D.S. Carvalho, R. Santos, J.L. Bicas, G.M. Pastore, Natural flavourings from biotechnology for foods and beverages, in: Natural food additives, ingredients and flavourings (Woodhead Publishing, United Kingdom, 2012). [Google Scholar]
- C.S.M. Pereira, A.E. Rodrigues, Ethyl lactate main properties, production processes, and applications, in: F. Chemat, M. Vian (Eds.), Alternative solvents for natural products extraction. green chemistry and sustainable technology (Springer, Berlin, Heidelberg, Berlin, 2014). [Google Scholar]
- X. Li, X. Zhang, H. Jian, X. Xu, Y. Xi, Biocycle fermentation based on lactic acid bacteria and yeast for the production of natural ethyl lactate, ACS Omega. 4, 16009-16015 (2019) [CrossRef] [Google Scholar]
- L.L. Ruta, I.C. Farcasanu, Coffee and yeasts: From flavor to biotechnology, Fermentation. 7, 1-16 (2021) [Google Scholar]
- M. Jeszka-Skowron, R. Frankowski, A. Zgoła-Grześkowiak, Comparison of methylxantines, trigonelline, nicotinic acid and nicotinamide contents in brews of green and processed arabica and robusta coffee beans -Influence of steaming, decaffeination and roasting processes on coffee beans, LWT. 125, 1-9 (2020) [Google Scholar]
- B. Mehari, M. Redi-Abshiro, B.S. Chandravanshi, M. Atlabachew, S. Combrinck, R. McCrindle, Simultaneous determination of alkaloids in green coffee beans from Ethiopia: Chemometric evaluation of geographical origin, Food Anal. Methods. 9, 1627-1637 (2016) [CrossRef] [Google Scholar]
- S. Saud, A.M. Salamatullah, Relationship between the chemical composition and the biological functions of coffee, Molecules. 26, 1-14 (2021) [Google Scholar]
- C.F. Tsai, I.P.J. Jioe, The analysis of chlorogenic acid and caffeine content and its correlation with coffee bean color under different roasting degree and sources of coffee (Coffea arabica typica), Processes. 9, 1-15 (2021) [Google Scholar]
- S. Awwad, R. Issa, L. Alnsour, D. Albals, I. Al-Momani, Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their levels, Molecules. 26, 1-9 (2021) [Google Scholar]
- H. Ashihara, Metabolism of alkaloids in coffee plants, Braz. J. Plant Physiol. 18, 1-8 (2006) [CrossRef] [Google Scholar]
- F. Kulapichitr, C. Borompichaichartkul, M. Fang, I. Suppavorasatit, K.R. Cadwallader, Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai arabica green coffee beans, Food Chem. 366, 1-8 (2022) [Google Scholar]
- Y.Y. Wang, J.Z. Xu, W.G. Zhang, Metabolic engineering of L-leucine production in Escherichia coli and Corynebacterium glutamicum: a review, Crit. Rev. Biotechnol. 39, 633-647 (2019) [CrossRef] [PubMed] [Google Scholar]
- U. Groeger, H. Sahm, Microbial production of L-leucine from a-ketoisocaproate by Corynebacterium glutamicum, Appl. Microbiol. Biotechnol. 25, 352-356 (1987) [CrossRef] [Google Scholar]
- P.S. Phale, M.C. Mahajan, C.S. Vaidyanathan, A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89, Arch. Microbiol. 163, 42-47 (1995) [CrossRef] [PubMed] [Google Scholar]
- M. Jeszka-Skowron, R. Frankowski, A. Zgoła-Grześkowiak, J. Płatkiewicz, Comprehensive analysis of metabolites in brews prepared from naturally and technologically treated coffee beans, Antioxidants. 12, 1-18 (2023) [Google Scholar]
- S.J. Martinez, A.P.P. Bressani, D.R. Dias, J.B.P. Simão, R.F. Schwan, Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation, Front. Microbiol. 10, 1-13 (2019) [CrossRef] [Google Scholar]
- H.H. Balzer, Chemistry I: Non-Volatile Compounds 1B: Acids in Coffee, in: R.J. Clarke, O.G. Vitzthum (Eds.), Coffee: Recent Developments, (Blackwell Science Ltd, Munich, Germany, 2001). [Google Scholar]
- R.M. Zelle, E. De Hulster, W.A. Van Winden, P. De Waard, C. Dijkema, A.A. Winkler, J.M.A. Geertman, J.P. Van Dijken, J.T. Pronk, A.J.A. Van Maris, Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export, Appl Environ Microbiol. 74, 2766-2777 (2008) [Google Scholar]
- X. Chen, C. Zhang, J. Cheng, X. Shi, L. Li, Z. Zhang, J. Bai, Y. Chen, S. Li, H. Ying, Enhancement of adenosine production by Bacillus subtilis CGMCC 4484 through metabolic flux analysis and simplified feeding strategies, Bioprocess Biosyst Eng. 36, 1851-1859 (2013) [CrossRef] [PubMed] [Google Scholar]
- A.R. Spevacek, K.H. Benson, C.W. Bamforth, C.M. Slupsky, Beer metabolomics: Molecular details of the brewing process and the differential effects of late and dry hopping on yeast purine metabolism, J. Inst. Brew. 122, 21-28 (2016) [CrossRef] [Google Scholar]
- A. Cano-Flores, J. Gómez, I. S. Escalona-Torres, B. Velasco-Bejarano, Microorganisms as biocatalysts and enzyme sources, in: M. Blumenberg, M. Shaaban, A. Elgami (Eds.). Microorganisms, (IntechOpen, London, United Kingdom, 2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.