Open Access
Issue
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
Article Number 01011
Number of page(s) 9
Section Agriculture, Animal Sciences, Agroforestry, and Agromaritime Innovation
DOI https://doi.org/10.1051/bioconf/202412301011
Published online 30 August 2024
  • J.A. Montagnac, CR Davis, SA Tanumiharjo, Nutritional value of cassava for use as a staple food and recent advances for improvement, Compr. Rev. Food Sci. Food Saf. 8, 3 (2009) [Google Scholar]
  • A. Parmar, B Sturm, O Hensel, Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses, Food Secur. 9, 5 (2017) [Google Scholar]
  • O. Ayetigbo, S Latif, A Abass, J Muller, Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: a review, Sustainability. 10, 9 (2018) [Google Scholar]
  • O.M. Oluba, AB Oredokun-Lache, AA Odutuga, Effect of vitamin A biofortification on the nutritional composition of cassava flour (gari) and evaluation of its glycemic index in healthy adults, J. Food Biochem. 42, 4 (2017) [Google Scholar]
  • A.L. Chávez, JM Bedoya, T Sánchez, C Iglesias, H Ceballos, W Roca, Iron, carotene, and ascorbic acid in cassava roots and leaves, Food Nutr. Bull. 21, 4 (2000) [Google Scholar]
  • T. Sánchez, AL Chávez, H Ceballos, DBA Rodriguez, P Nestel, M Ishitani, Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content, J. Sci. Food Agric. 86, 4 (2006) [Google Scholar]
  • O.F. Udogu, G Omosun, DN Njoku, Comparative evaluation of physiological postharvest root deterioration, total carotenoids, starch content and dry matter of selected cassava cultivar, Niger. Agric. J. 52, 1 (2021) [Google Scholar]
  • R.S. Rahmawati, A Fathoni, SW Ardie, D Sukma, Sudarsono, Assessment of yellow and white fleshed cassava tuberous root cultivars reveals different responses to postharvest physiological deterioration, J. Trop. Crop Sci. 11, 1 (2024) [Google Scholar]
  • G. Beyene, FR Solomon, RD Chauchan, E Gaitan-Solis, N Narayan, J Gehan, D Siritunga, RL Stevens, J Jifon, JV Eck, E Linsler, M Gehan, M Ilyas, M Fregene, RT Sayre, P Anderson, NJ Taylor, EB Cahoon, Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch, Plant Biotechnol. J. 16, 6 (2018) [Google Scholar]
  • V.G. Uarrota, R Moresco, B Coelho, EdaC Nunes, LA Peruch, EdeO Neubert, M Rocha, M Maraschin, Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during cassava postharvest physiological deterioration, Food Chem. 161, 67-78 (2014) [CrossRef] [Google Scholar]
  • P. Golkar, M Taghizadeh, In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress, PCTOC. 134, 1 (2018) [Google Scholar]
  • U. Sarker, S Oba, Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor, Appl. Biochem. Biotechnol. 186, 4 (2018) [Google Scholar]
  • Y. Shen, J Li, R Gu, L Yue, H Wang, X Zhan, B Xing, Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf, Chemosphere. 197, 1 (2018) [Google Scholar]
  • A. Nduwumuremyi, R Melis, P Shanahan, T Asiimwe, Introgression of antioxidant activity into cassava (Manihot esculenta C.): an effective technique for extending fresh storage roots shelf life, Plant Breed. 135, 1 (2016) [CrossRef] [Google Scholar]
  • K. Elliott, JC Berry, H Kim, RS Bart, A comparison of ImageJ and machine learningbased image analysis methods to measure cassava bacterial blight disease severity, Plant Methods. 18, 86 (2022) [CrossRef] [Google Scholar]
  • O.P. Letelay, A Hiariej, A Pesik, Analisis beta karoten dan vitamin pada kulit dan daging buah pisang tongka langit (Musa Troglodytarum L.) di Kota Ambon, J. Agritechno. 13, 1 (2020) [Google Scholar]
  • V.G. Uarrota, M Maraschin, Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration, BMC Res. Notes. 8, 648 (2015) [CrossRef] [Google Scholar]
  • H. Ceballos, N Morante, T Sánchez, D Ortiz, I Aragón, AL Chávez, M Pizarro, F Calle, D Dufour, Rapid cycling recurrent selection for increased carotenoids content in cassava roots, Crop Sci. 53, 6 (2013) [Google Scholar]
  • C.I. Cazzonelli, Goldacre review: carotenoids in nature: insights from plants and beyond, Funct. Plant Biol. 38, 11 (2011) [Google Scholar]
  • V. Lebot, F Lawac, I Munoz-Cuervo, P Mercier, L Legendre, Metabolite fingerprinting of cassava (Manihot esculenta Crantz) landraces assessed for postharvest physiological deterioration (PPD), Food Chem. 421, 3 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.