Open Access
Issue |
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 8 | |
Section | Agriculture, Animal Sciences, Agroforestry, and Agromaritime Innovation | |
DOI | https://doi.org/10.1051/bioconf/202412301030 | |
Published online | 30 August 2024 |
- A.L.R. Westerling, Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring, Philosophical Transactions of the Royal Society B: Biological Sciences. 371, 1696 (2016) [Google Scholar]
- The Ministry of Environment and Forestry of the Republic of Indonesia. [internet] https://ppid.menlhk.go.id/berita/siaran-pers/7579/kinerja-pengendalian-kebakaranhutan-dan-lahan-tahun-2023. [27 Februari 2024] (2023) [Google Scholar]
- A.R. Kusuma AR, F.M. Shodiq, M.F. Hazim, D.P. Laksono, Hasil Studi Pola Kebakaran Lahan Gambut melalui Citra Satelit Sentinel-2 dengan Pengimplementasian Machine Learning Metode Random Forest: Kajian Literatur. JGISE. 4, 2 (2021) [Google Scholar]
- L. Syaufina, Metode Penilaian Areal Pasca Kebakaran Hutan. IPB Press: Bogor, Indonesia (2017) [Google Scholar]
- L. Syaufina, A.A. Hamzah, Changes of tree species diversity in peatland impacted by moderate fire severity at Teluk Meranti, Pelalawan, Riau Province, Indonesia. Biodiversitas. 22, 5 (2021) [Google Scholar]
- M. Arrafi, L. Somantri, R. Ridwana, Pemetaan Tingkat Keparahan Kebakaran Hutan dan Lahan Menggunakan Algoritma Normalized Burn Ratio (NBR) Pada Citra Landsat 8 di Kabupaten Muaro Jambi. Jurnal Geosains dan Remote Sensing. 3, 1 (2022) [Google Scholar]
- Y.Q. Guo, G. Chen, Y.N. Wang, X.M. Zha, Z.D. Xu, Wildfire Identification Based on an Improved Two-Channel Convolutional Neural Network. Forests. 13, 1302 (2022) [CrossRef] [Google Scholar]
- X. Zheng, F. Chen, L. Lou, P. Cheng, Y. Huang, Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network. Remote Sens. 14, 536 (2022) [CrossRef] [Google Scholar]
- S. Khan, A. Khan, Firenet: Deep learning based forest fire classification and detection in smart cities. Symmetry. 14, 10 (2022) [Google Scholar]
- M.I. Gürsoy, O. Orhan, S. Tekin, Creation of wildfire susceptibility maps in the Mediterranean Region (Turkey) using convolutional neural networks and multilayer perceptron techniques. Forest Ecology and Management. 538, 121006 (2023) [CrossRef] [Google Scholar]
- B.H. Saharjo, L. Syaufina, A.D Nurhayati, E.I. Putra, R.D. Waldi, Wardana, Pengendalian Kebakaran Hutan Dan Lahan Di Wilayah Komunitas Terdampak Asap (IPB Press: Bogor, Indonesia, 2018) [Google Scholar]
- R.P. Sadewa, B. Irawan, C. Setianingsih, Fire Detection Using Image Processing Techniques with Convolutional Neural Networks. ISRITI (2019) [Google Scholar]
- S. Hijazi, R. Kumar, C. Rowen, Using Convolutional Neural Networks for Image Recognition. IP Group. Cadence (2015) [Google Scholar]
- J. Ker, L. Wang, J. Rao, T. Lim, Deep Learning Applications in Medical Image Analysis, IEEE Access. 6 (2018) [Google Scholar]
- K. O'Shea, R. Nash, An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) [Google Scholar]
- A. Santoso, G. Ariyanto, Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah. Emit. J. Tek. Elektro. 18, 01 (2018) [Google Scholar]
- K. Dong, Zhou, C. Zhou, Y. Ruan, Y. Li, MobileNetV2 Model for Image Classification. ITCA (2020) [Google Scholar]
- J.H. Roh, S.H Min, M.S. Kong, Analysis of Fire Prediction Performance of Image Classification Models based on Convolutional Neural Network. Fire Science and Engineering. 36, 6 (2022) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.