Open Access
Issue
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
Article Number 01050
Number of page(s) 7
Section Agriculture, Animal Sciences, Agroforestry, and Agromaritime Innovation
DOI https://doi.org/10.1051/bioconf/202412301050
Published online 30 August 2024
  • H.P.S. Makkar, Smart livestock feeding strategies for harvesting triple gain - the desired outcomes in planet, people and profit dimensions: a developing country perspective, Animal Production Science. 56, 519-534 (2016) [CrossRef] [Google Scholar]
  • L.E. Sollenberger, MM Kohmann, JCB DubeuxJr, ML Silveira, Grassland management affects delivery of regulating and supporting ecosystem services, Crop Sci. 59, 441-459 (2019) [CrossRef] [Google Scholar]
  • J. Benton JonesJr., Plant Nutrition and Soil Fertility Manual, (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2012) [CrossRef] [Google Scholar]
  • A. Omokanye, C Yoder, L Sreekumar, L Vihvelin, M Benoit, forage production and economic performance of pasture rejuvenation methods in Northern Alberta, Canada, Sustainable Agriculture Research. 7, 2 (2018) [Google Scholar]
  • J. Dijkstra, O Oenema, JW Van Groenigen, JW Spek, AM Van Vuuren, A Bannink, Diet effects on urine composition of cattle and N2O emissions, Animal. 7, 292-302 (2013) [CrossRef] [Google Scholar]
  • T. Tadesse, M Liben, A Asefa, Role of maize (Zea mays L), Fababean (Vicia faba L) intercropping planting pattern on productivity and nitrogen uses efficiency of maize in northwestern Ethiopia highland. International Research Journal. 2, 102-112 (2012) [Google Scholar]
  • J. Liu,, Z Zeng, L Jiao, Y Hu, Y Wang, H Li, Intercropping of different silage maize cultivars and alfalfa, Zuo Wu Xue Bao. 32, 125-130 (2006) [Google Scholar]
  • B.P. Singh, HP Singh, E Obeng, 13 Elephant grass. Biofuel Crops: Production, Physiology and Genetics, CABI. 271-291(2013) [Google Scholar]
  • K. Woodard, G Prine, Forage yield and nutritive value of elephant grass as affected by harvet frequency and genotype, Agronomy journal. 83, 541-546 (1991) [CrossRef] [Google Scholar]
  • FAO, The state of Food insecurity in the world 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome. FAO. (2015) [Google Scholar]
  • M. Islam, C Saha, N Sarker, M Jalil, M Hasanuzzaman, Effect of Variety on propotion of botanical fractions and nutritive value of different Napier grass and relationship between botanical fractions and nutritive value, Asian Australasian Journal of Animal Science. 16, 837-842 (2003) [CrossRef] [Google Scholar]
  • W. Gwayumba, D Christensen, J Mckinnon, P Yu, Dry matter intake, digestibility and milk yield by Friesian cows fed two Napier grass varieties, Asian Australian Journal of Animal Sciences. 15, 516-521 (2002) [CrossRef] [Google Scholar]
  • A.D. Fefirenta, Sunardi, AD Prawesti, Perkecambahan empat jenis legume cover crop, Gunung Djati Conference Series. 18, 2774-6585 (2023) [Google Scholar]
  • U.S. Mohammeda, G Animut, M Urgeb, Effect of different spacing of Napier grass intercropped with or without Lablab on biomass yield and nutritional value of Napier grass, Scientific Journal of Pure and Applied Sciences. 5, 496-508 (2016) [Google Scholar]
  • T. Bayble, S Melaku, N Prasad, Effect of cutting dates on nutritive value of Napier grass planted sole and in association with Desmodium or Lablab, Livestock Research for Rural Development. 19, 120-136 (2007) [Google Scholar]
  • K. Yisehak, Effect of seed proportions of Rhodes grass and white seet clover at sowing on agronomic characteristics and nutritional quality, Livestock Research for Rural Development. 20, 28 (2008) [Google Scholar]
  • N.G. Dinsa, KD Yalew, The effect of intercropping of Lablab (Lablab purpureus L) and Cowpea (Vigna unguiculata L) at different planting densities on in vitro and in sacco dry matter digestibility of Napier grass (Pennisetum purpureum), Agricultural Science Digest. 42, 3 (2022) [Google Scholar]
  • A.T. Adjesiwor, MA Islam, VD Zheljazkov, JP Ritten, A Garcia, Y Garcia, Grass-legume seed mass ratios and nitrogen rates affect forage accumulation, nutritive value, and profitability, Crop Science. 57, 5 (2017) [Google Scholar]
  • M.M. Kohmann, LE Sollenberger, JCB Dubeux, ML Silveira, LSB Moreno, LS da Silva, P Aryal, Nitrogen Fertilization and Proportion of Legume Affect Litter Decomposition and Nutrient Return in Grass Pastures, Crop Science. 58, 5 (2018) [Google Scholar]
  • D.K. Bastia, SK Behera, MR Panda, Impacts of soil fertility management on productivity and economics of rice and fodder intercropping systems under rainfed conditions in Odisha, India, Journal of Integrative Agriculturem. 20, 12 (2021) [Google Scholar]
  • B. Behera, GRM Sankar, KL Sharma, A Mishra, SK Mohanty, PK Mishra, BS Rath, JK Grace, Effects of fertilizers on yield, sustainability, and soil fertility under rainfed pigeon pea + rice system in subhumid oxisol soils, Communications in Soil Science and Plant Analysis. 43,17 (2012) [Google Scholar]
  • J. Supriatna, FN Syihab, N Sativa, Y Yuwariah, D Ruswandi, Seleksi jagung hibrida unpad berdasarkan komponen hasil dan parameter tumpangsari pada sistem tanam tumpangsari jagung-ubi jalar, Jurnal AGRO. 9, 1 (2022) [CrossRef] [Google Scholar]
  • M. Dariush, M Ahad, O Meysam, Assesing the land equivalent ratio (LER) of two corn (Zea mays L) varieties intercropping at various nitrogen level in Karaj, Iran, Journal of Central European Agriculture. 7, 2 (2006) [Google Scholar]
  • S.N. Ram, Response of Guinea grass (Panicum maximum Jacq)-legumes intercropping to weed control, Forage Res. 41, 1 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.