Open Access
Issue |
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 13 | |
Section | Innovative Technologies in Bioresource Science and Engineering | |
DOI | https://doi.org/10.1051/bioconf/202412304006 | |
Published online | 30 August 2024 |
- F. Indra Darmawan, “Proses produksi biodiesel dari minyak jelantah dengan metode pencucian dry-wash sistem,” 2013. [Online]. Available: www.wartaekonomi.com/indicator, [Google Scholar]
- L. Xu, S. Xu, X. Lu, M. Jia, and X. S. Bai, “Large eddy simulation of spray and combustion characteristics of biodiesel and biodiesel/butanol blend fuels in internal combustion engines,” Appl. Energy Combust. Sci., vol. 16, Dec. 2023 doi: 10.1016/j.jaecs.2023.100197. [Google Scholar]
- I. W. Suirta, “Preparasi biodiesel dari minyak jelantah kelapa sawit,” 2009. [Google Scholar]
- C. Wahyu and A. Dewi, “Analisis pembuatan biodiesel dari minyak jelantah,” 2016. [Google Scholar]
- Prasetyo, “Studi pemanfaatan minyak jelantah sebagai bahan baku pembuatan biodiesel Studi On The Utilization of Used Oil As Raw Material For Biodiesel,” 2018. [Google Scholar]
- E. K. Sitepu et al., “Homogenizer-intensified room temperature biodiesel production using heterogeneous palm bunch ash catalyst,” South African J. Chem. Eng., vol. 40, no. February, pp. 240-245, 2022 doi: 10.1016/j.sajce.2022.03.007. [CrossRef] [Google Scholar]
- A. Praptijanto et al., “Sonochemistry approach to reducing biodiesel reaction time from Jatropha Curcas oil by clamp on tubular reactor,” Energy Procedia, vol. 68, pp. 480-489, 2015 doi: 10.1016/j.egypro.2015.03.280. [CrossRef] [Google Scholar]
- I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21-31, 2016 doi: 10.1016/j.ejpe.2015.06.007. [CrossRef] [Google Scholar]
- R. Manurung, R. Hasibuan, and A. G. A. Siregar, “Preparation and characterization of lithium, sodium, and potassium silicate from palm leaf as a potential solid base catalyst in developed biodiesel production,” Case Stud. Chem. Environ. Eng., vol. 9, no. November 2023, p. 100543, 2023 doi: 10.1016/j.cscee.2023.100543. [Google Scholar]
- G. D. Lawrence, “Perspective: The saturated fat-unsaturated oil dilemma: Relations of dietary fatty acids and serum cholesterol, atherosclerosis, inflammation, cancer, and all-cause mortality,” Adv. Nutr., vol. 12, no. 3, pp. 647-656, 2021 doi: 10.1093/advances/nmab013. [CrossRef] [Google Scholar]
- Y. Zhao, Y. Lu, H. Zhuang, and S. Shan, “In-situ retention of nitrogen, phosphorus in agricultural drainage and soil nutrients by biochar at different temperatures and the effects on soil microbial response,” Sci. Total Environ., vol. 904, no. August, p. 166292, 2023 doi: 10.1016/j.scitotenv.2023.166292. [CrossRef] [Google Scholar]
- M. U. H. Suzihaque, H. Alwi, U. Kalthum Ibrahim, S. Abdullah, and N. Haron, “Biodiesel production from waste cooking oil: A brief review,” Mater. Today Proc., vol. 63, pp. S490-S495, Jan. 2022 doi: 10.1016/j.matpr.2022.04.527. [CrossRef] [Google Scholar]
- C. Wang et al., “Viscosity reduction mechanism of surface-functionalized Fe3O4 nanoparticles in different types of heavy oil,” Fuel, vol. 360, no. PC, p. 130535, 2024 doi: 10.1016/j.fuel.2023.130535. [CrossRef] [Google Scholar]
- C. Adhikesavan, D. Ganesh, and V. Charles Augustin, “Effect of quality of wastecooking oil on the properties of biodiesel, engine performance and emissions,” Clean. Chem. Eng., vol. 4, p. 100070, Dec. 2022 doi: 10.1016/j.clce.2022.100070. [CrossRef] [Google Scholar]
- M. S. Âlvarez, M. A. Longo, A. Rodriguez, and F. J. Deive, “The role of deep eutectic solvents in catalysis. A vision on their contribution to homogeneous, heterogeneous and electrocatalytic processes,” J. Ind. Eng. Chem., no. July, 2023, doi: 10.1016/j.jiec.2023.11.030. [Google Scholar]
- C. Chang, Q. Lyu, Y. Ding, and Z. Ji, “Investigation of oil mist filtration performance of surface modified coalescence filters with asymmetric wettability,” Sep. Purif. Technol., vol. 331, no. August 2023, p. 125465, 2024 doi: 10.1016/j.seppur.2023.125465. [CrossRef] [Google Scholar]
- R. Kol et al., “Removal of undissolved substances in the dissolution-based recycling of polystyrene waste by applying filtration and centrifugation,” Sep. Purif. Technol., vol. 325, no. May, p. 124682, 2023 doi: 10.1016/j.seppur.2023.124682. [CrossRef] [Google Scholar]
- R. A. Alsaiari, E. M. Musa, and M. A. Rizk, “Biodiesel production from date seed oil using hydroxyapatite-derived catalyst from waste camel bone,” Heliyon, vol. 9, no. 5, p. e15606, May 2023 doi: 10.1016/j.heliyon.2023.e15606. [CrossRef] [PubMed] [Google Scholar]
- W. M. Kedir, K. T. Wondimu, and G. S. Weldegrum, “Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell,” Heliyon, vol. 9, no. 5, May 2023 doi: 10.1016/j.heliyon.2023.e16475. [Google Scholar]
- M. D. Putra, I. F. Nata, and C. Irawan, “Biodiesel production from waste cooking oil using heterogeneous catalyst: Biodiesel product data and its characterization,” Data Br., vol. 28, Feb. 2020 doi: 10.1016/j.dib.2019.104879. [Google Scholar]
- P. Saetiao, N. Kongrit, C. K. Cheng, J. Jitjamnong, C. Direksilp, and N. Khantikulanon, “Catalytic conversion of palm oil into sustainable biodiesel using rice straw ash supported-calcium oxide as a heterogeneous catalyst: Process simulation and techno-economic analysis,” Case Stud. Chem. Environ. Eng., vol. 8, Dec. 2023 doi: 10.1016/j.cscee.2023.100432. [CrossRef] [Google Scholar]
- H. N. Nassar, A. R. Ismail, R. A. El-Salamony, O. Aboelazayem, S. A. Abu Amr, and N. S. El-Gendy, “Animal bone affluence in environmental reclamation: Biodiesel production, petro-diesel biodesulfurization and wastewater phototreatment,” Biofuels, Bioprod. Biorefining, vol. 15, no. 3, pp. 770-792, 2021 doi: 10.1002/bbb.2194. [CrossRef] [Google Scholar]
- A. Hart, K. Ebiundu, E. Peretomode, H. Onyeaka, O. F. Nwabor, and K. C. Obileke, “Value-added materials recovered from waste bone biomass: technologies and applications,” RSC Advances, vol. 12, no. 34. Royal Society of Chemistry, pp. 22302-22330, Aug. 10, 2022 doi: 10.1039/d2ra03557j. [CrossRef] [PubMed] [Google Scholar]
- R. Widyastari, “Pengolahan tulang bebek sebagai adsorben metilen blue,” 2014. [Google Scholar]
- E. Rohmiasih, S. Rezeki, and S. Khairi, “Pengaruh Konsentrasi Katalis Heterogen Kalsium Oksida (CaO) dari Cangkang Telur Bebek pada Reaksi Transesterifikasi Minyak Kelapa,” in Prosiding Seminar Nasional Penerapan Ilmu Pengetahuan dan Teknologi : kampus merdeka meningkatkan kecerdasan sumberdaya manusia melalui interdispliner ilmu pengetahuan dan teknologi : Pontianak, 24 Agustus 2021, Untan Press, Nov. 2021 pp. 33-48. doi: 10.26418/pipt.2021.22. [Google Scholar]
- E. Carota, M. Petruccioli, A. D’Annibale, and S. Crognale, “Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production,” Heliyon, vol. 6, no. 9, Sep. 2020 doi: 10.1016/j.heliyon.2020.e04801. [CrossRef] [PubMed] [Google Scholar]
- A. N. Amenaghawon, K. Obahiagbon, V. Isesele, and F. Usman, “Optimized biodiesel production from waste cooking oil using a functionalized bio-based heterogeneous catalyst,” Clean. Eng. Technol., vol. 8, Jun. 2022 doi: 10.1016/j.clet.2022.100501. [Google Scholar]
- A. I. Almohana et al., “Theoretical investigation on optimization of biodiesel production using waste cooking oil: Machine learning modeling and experimental validation,” Energy Reports, vol. 8, pp. 11938-11951, Nov. 2022, doi: 10.1016/j.egyr.2022.08.265. [CrossRef] [Google Scholar]
- W. Wongjaikham et al., “Heterogeneously catalyzed palm biodiesel production in intensified fruit blender,” Arab. J. Chem., p. 105273, Sep. 2023 doi: 10.1016/j.arabjc.2023.105273. [Google Scholar]
- M. Takase, R. Kipkoech, D. L. Miller, and E. K. Buami, “Optimisation of the reaction conditions for biodiesel from Parkia biglobosa oil via transesterification with heterogeneous clay base catalyst,” Fuel Commun., vol. 15, p. 100089, Jun. 2023 doi: 10.1016/j.jfueco.2023.100089. [CrossRef] [Google Scholar]
- M. Saad, B. Siyo, and H. Alrakkad, “Preparation and characterization of biodiesel from waste cooking oils using heterogeneous Catalyst(Cat.TS-7) based on natural zeolite,” Heliyon, vol. 9, no. 6, Jun. 2023 doi: 10.1016/j.heliyon.2023.e15836. [Google Scholar]
- F. A. Aisien, K. O. Uwadiae, and E. T. Aisien, “Process optimization for blended waste frying oil in biodiesel production using CaO derived from African periwinkle shell catalyst through response surface methodology,” Sustain. Chem. Environ., p. 100042, Sep. 2023 doi: 10.1016/j.scenv.2023.100042. [CrossRef] [Google Scholar]
- T. F. Adepoju, E. Victor, E. I. Ekop, R. E. Emberru, T. A. Balogun, and A. D. Adeniyi, “Residual wood ash powder: A predecessor for the synthesis of CaO-K2O -SiO2 base catalyst employed for the production of biodiesel from Asimina triloba oil seed,” Case Stud. Chem. Environ. Eng., vol. 6, Dec. 2022 doi: 10.1016/j.cscee.2022.100252. [Google Scholar]
- N. Mohammadi, N. Ostovar, R. Niromand, and F. Absalan, “Advancing biodiesel production from Pyrus glabra seed oil: Kinetic study and RSM optimization via microwave-assisted transesterification with biocompatible hydroxyapatite catalyst,” Sustain. Chem. Pharm., vol. 36, Dec. 2023 doi: 10.1016/j.scp.2023.101272. [Google Scholar]
- C. R. Mahesha et al., “Optimization of transesterification production of biodiesel from Pithecellobium dulce seed oil,” Energy Reports, vol. 8, pp. 489-497, Dec. 2022 doi: 10.1016/j.egyr.2022.10.228. [CrossRef] [Google Scholar]
- K. B. Hundie, L. D. Shumi, and T. A. Bullo, “Investigation of biodiesel production parameters by transesterification of watermelon waste oil using definitive screening design and produced biodiesel characterization,” South African J. Chem. Eng., vol. 41, pp. 140-149, Jul. 2022 doi: 10.1016/j.sajce.2022.06.002. [CrossRef] [Google Scholar]
- R. K. P. Cardoso, G. V. A. Silva, B. T. S. Alves, V. A. Freire, J. J. N. Alves, and B. V. S. Barbosa, “Evaluation of the effect of Si/Mo and oil/alcohol ratios in the production of biodiesel from soybean oil,” Arab. J. Chem., vol. 15, no. 9, Sep. 2022 doi: 10.1016/j.arabjc.2022.104074. [Google Scholar]
- E. C. Pham et al., “Optimization of microwave-assisted biodiesel production from waste catfish using response surface methodology,” Energy Reports, vol. 8, pp. 5739-5752, Nov. 2022 doi: 10.1016/j.egyr.2022.04.036. [CrossRef] [Google Scholar]
- F. Ishola et al., “Biodiesel production from palm olein: A sustainable bioresource for Nigeria,” Heliyon, vol. 6, no. 4, Apr. 2020 doi: 10.1016/j.heliyon.2020.e03725. [CrossRef] [PubMed] [Google Scholar]
- R. Djayasinga, K. Fitriany, F. Yuniza, and A. Z. Amien, “Pelatihan Pembuatan Biodiesel Berbahan Baku Minyak Jelantah Kepada Komunitas Pengguna Teknologi Tepat Guna,” J. Pengabdi. Kpd. Masy. TABIKPUN, vol. 2, no. 2, pp. 109-118, Jul. 2021, doi: 10.23960/jpkmt.v2i2.36. [Google Scholar]
- M. S. N. Awang et al., “Effect of diesel-palm biodiesel fuel with plastic pyrolysis oil and waste cooking biodiesel on tribological characteristics of lubricating oil,” Alexandria Eng. J., vol. 61, no. 9, pp. 7221-7231, Sep. 2022 doi: 10.1016/j.aej.2021.12.062. [CrossRef] [Google Scholar]
- M. S. Gad, M. M. Abdel Aziz, and H. Kayed, “Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel,” Propuls. Power Res., vol. 11, no. 2, pp. 209223, Jun. 2022 doi: 10.1016/j.jppr.2022.04.004. [Google Scholar]
- Z. Kang, H. Wang, Y. Bai, and Z. Wu, “Thermal efficiency and boundary analysis of compression ignition internal combustion Rankine cycle engine,” Case Stud. Therm. Eng., vol. 50, no. March, p. 103466, 2023 doi: 10.1016/j.csite.2023.103466. [CrossRef] [Google Scholar]
- M. El-Adawy, “Effects of diesel-biodiesel fuel blends doped with zinc oxide nanoparticles on performance and combustion attributes of a diesel engine,” Alexandria Eng. J., vol. 80, pp. 269-281, Oct. 2023 doi: 10.1016/j.aej.2023.08.060. [CrossRef] [Google Scholar]
- K. A. Abed, A. K. El Morsi, M. M. Sayed, A. A. E. Shaib, and M. S. Gad, “Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine,” Egypt. J. Pet., vol. 27, no. 4, pp. 985-989, Dec. 2018, doi: 10.1016/j.ejpe.2018.02.008. [CrossRef] [Google Scholar]
- S. Manickam, S. Pachamuthu, S. Chavan, and S. C. Kim, “The effect of thermal barrier coatings and neural networks on the stability, performance, and emission characteristics of Pongamia water emulsion biodiesel in compression ignition engines,” Case Stud. Therm. Eng., vol. 49, Sep. 2023 doi: 10.1016/j.csite.2023.103079. [CrossRef] [Google Scholar]
- K. Winangun, A. Setiyawan, B. Sudarmanta, I. Puspitasari, and E. L. Dewi, “Investigation on properties biodiesel-hydrogen mixture on the combustion characteristics of diesel engine,” Case Stud. Chem. Environ. Eng., vol. 8, Dec. 2023 doi: 10.1016/j.cscee.2023.100445. [CrossRef] [Google Scholar]
- A. Milena-Pérez, N. Rodriguez-Villagra. F. Feria, C. Aguado, and L. E. Herranz, “Critical review of fuel oxidation database under dry storage conditions,” Prog. Nucl. Energy, vol. 165, no. February, 2023 doi: 10.1016/j.pnucene.2023.104914. [Google Scholar]
- Z. Helwani et al., “Production of high-performance biodiesel with a high oxidation stability through a fractionation method using urea,” South African J. Chem. Eng., vol. 45, pp. 162-171, Jul. 2023 doi: 10.1016/j.sajce.2023.05.009. [CrossRef] [Google Scholar]
- M. Y. Chang, E. S. Chan, and C. P. Song, “Biodiesel production catalysed by low cost liquid enzyme Eversa® Transform 2.0: Effect of free fatty acid content on lipase methanol tolerance and kinetic model,” Fuel, vol. 283, no. August 2020, p. 119266, 2021 doi: 10.1016/j.fuel.2020.119266. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.