Open Access
Issue
BIO Web Conf.
Volume 123, 2024
The 1st International Seminar on Tropical Bioresources Advancement and Technology (ISOTOBAT 2024)
Article Number 04008
Number of page(s) 8
Section Innovative Technologies in Bioresource Science and Engineering
DOI https://doi.org/10.1051/bioconf/202412304008
Published online 30 August 2024
  • R. Dutu, Challenges and policies in Indonesia’s energy sector, Energy Policy. 98, 513 519 (2016) [CrossRef] [Google Scholar]
  • K.F. Yee, K.T. Tan, A.Z. Abdullah, K.T. Lee, Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability, Appl Energy. 86, (2009) [Google Scholar]
  • S.P. Singh, D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review, Renewable and Sustainable Energy Reviews. 14, 200-216 (2010) [CrossRef] [Google Scholar]
  • S. Sayyed, R.K. Das, K. Kulkarni, Experimental investigation for evaluating the performance and emission characteristics of DICI engine fueled with dual biodieseldiesel blends of Jatropha, Karanja, Mahua, and Neem, Energy. 238 (2022). [Google Scholar]
  • S. Niju, & A. Janaranjani, & R. Nanthini, P.A. Sindhu, & M. Balajii, Valorization of banana pseudostem as a catalyst for transesterification process and its optimization studies, Biomass Conversion and Biorefinery. 13, 1805-1818 (2021) [Google Scholar]
  • R. Foroutan, S.J. Peighambardoust, R. Mohammadi, S.H. Peighambardoust, B. Ramavandi, Application of walnut shell ash/ZnO/K2CO3 as a new composite catalyst for biodiesel generation from Moringa oleifera oil, Fuel. 311 (2022) [Google Scholar]
  • A. Arumugam, P. Sankaranarayanan, Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil, Renew Energy. 153, 1272-1282 (2020) [CrossRef] [Google Scholar]
  • F. Anwar, M. Tariq, J. Nisar, G. Ali, H. Kanwal, Optimization of biodiesel yield from non food karanja seed oil: Characterization and assessment of fuel properties, Sustainable Chemistry for the Environment. 3, 100035 (2023). [CrossRef] [Google Scholar]
  • P.C. Jena, H. Raheman, G. V. Prasanna Kumar, R. Machavaram, Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids, Biomass Bioenergy. 34, 1108-1116 (2010) [CrossRef] [Google Scholar]
  • M.J. Pratas, S.V.D. Freitas, M.B. Oliveira, S.C. Monteiro, Â.S. Lima, J.A.P. Coutinho, Biodiesel density: Experimental measurements and prediction models, Energy and Fuels. 25, 2333-2340 (2011) [CrossRef] [Google Scholar]
  • L.F. Ramirez Verduzco, Density and viscosity of biodiesel as a function of temperature: Empirical models, Renewable and Sustainable Energy Reviews. 19, 652-665 (2013). [CrossRef] [Google Scholar]
  • S. Da, F.J. Keil, Modeling of Three-Dimensional Linear Pressure Fields in Sonochemical Reactors with Homogeneous and Inhomogeneous Density Distributions of Cavitation Bubbles, (1998) [Google Scholar]
  • M. Marwanto, M.I. Maulana, F. Febrianto, N.J. Wistara, S. Nikmatin, N. Masruchin, L.H. Zaini, S.H. Lee, N.H. Kim, Characteristics of nanocellulose crystals from balsa and kapok fibers at different ammonium persulfate concentrations, Wood Sci Technol. 55, 1319-1335 (2021) [CrossRef] [Google Scholar]
  • D.S. Nawawi, A. Maria, R.D. Firdaus, I.S. Rahayu, A. Fatrawana, F. Pramatana, P.S. Sinaga, W. Fatriasari, Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification, Journal of the Korean Wood Science and Technology. 51, 133-144 (2023) [CrossRef] [Google Scholar]
  • A.S. Silitonga, H.C. Ong, T.M.I. Mahlia, H.H. Masjuki, W.T. Chong, Characterization and production of Ceiba pentandra biodiesel and its blends, Fuel. 108, 855-858 (2013) [CrossRef] [Google Scholar]
  • N. Panneerselvam, A. Murugesan, D. Subramaniam, C. Vijayakumar, Production And Characterization Of Biodiesel From Ceiba Pentandra Seed Oil, International Journal of Advanced Engineering Technology Int J Adv Engg Tech. 7, 445-450 (2016) [Google Scholar]
  • S. Kathirvelu, N. Shenbaga, V. Moorthi, S. Neela Krishnan, K. Mayilsamy, T. Krishnaswamy, Production Of Biodiesel From Non Edible Ceiba Pentandra Seed Oil Having High Ffa Content. 9 (2014) [Google Scholar]
  • F. Kusumo, A.S. Silitonga, H.H. Masjuki, H.C. Ong, J. Siswantoro, T.M.I. Mahlia, Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks, Energy. 134, 24-34 (2017) [CrossRef] [Google Scholar]
  • L.F. Razon, Alternative crops for biodiesel feedstock, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 4, (2009) [Google Scholar]
  • R.D. Kusumaningtyas, M.H. Akbar, D. Widjanarko, Reduction of FFA in Kapok Randu (Ceiba pentandra) Seed Oil via Esterification Reaction Using Sulfuric Acid Catalyst: Experimental and Kinetics Study, Jurnal Bahan Alam Terbarukan. 8, 156-166 (2019) [CrossRef] [Google Scholar]
  • W.W.S. Ho, H.K. Ng, S. Gan, W.L. Chan, Ultrasound-assisted transesterification of refined and crude palm oils using heterogeneous palm oil mill fly ash supported calcium oxide catalyst, Energy Sci Eng. 3, 257-269 (2015) [CrossRef] [Google Scholar]
  • N. Yasvanthrajan, P. Sivakumar, K. Muthukumar, T. Murugesan, A. Arunagiri Production of biodiesel from waste bio-oil through ultrasound assisted transesterification using immobilized lipase, Environ Technol Innov. 21, (2021). [Google Scholar]
  • J. Saez-Bastante, S. Pinzi, G. Arzamendi, M.D. Luque De Castro, F. Priego-Capote, M.P. Dorado, Influence of vegetable oil fatty acid composition on ultrasound-assisted synthesis of biodiesel, Fuel. 125, 183-191 (2014) [CrossRef] [Google Scholar]
  • S. Karnjanakom, P. Maneechakr, I. Kurnia, A. Bayu, O. Farobie, C. Samart, S. Kongparakul, G. Guan, Sustainable upgrading of crude glycerol via ultrasound- reinforced bio-refinery process with oxygen-nitrogen subsistence: Co-application of reusable heterogeneous catalyst, Energy Convers Manag. 310, (2024) [Google Scholar]
  • D. Kumar, G. Kumar, Poonam, C.P. Singh, Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO2, Ultrason Sonochem. 17, 839-844 (2010) [CrossRef] [Google Scholar]
  • K. Suslick, Ultrasound: Its Chemical, Physical, and Biological Effects, (1988) [Google Scholar]
  • P. Cintas, S. Mantegna, E.C. Gaudino, G. Cravotto, A new pilot flow reactor for high intensity ultrasound irradiation. Application to the synthesis of biodiesel, Ultrason Sonochem. 17, 985-989 (2010) [CrossRef] [Google Scholar]
  • S.A. Miers, A.L. Kastengren, E.M. El-Hannouny, D.E. Longman, An Experimental Investigation Of Biodiesel Injection Characteristics Using A Light-Duty Diesel Injector, (2007) [Google Scholar]
  • L.X. Robertson, C.J. Schaschke, Combined high pressure and low temperature viscosity measurement of biodiesel, Energy and Fuels. 24, 1293-1297 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.