Open Access
Issue
BIO Web Conf.
Volume 124, 2024
The 2nd International Conference on Food Science and Bio-medicine (ICFSB 2024)
Article Number 01018
Number of page(s) 8
Section Food Science and Biomolecular Engineering
DOI https://doi.org/10.1051/bioconf/202412401018
Published online 23 August 2024
  • Plant LD, Xiong D, Romero J, Dai H, Goldstein SAN, Hypoxia produces pro-arrhythmic late sodium current in cardiac myocytes by sumoylation of NaV1.5 channels, Cell Rep. 30 (2020) 2225–2236. [CrossRef] [Google Scholar]
  • Zeng B, Liao X, Liu L, Ruan H, Zhang C, Thyroid hormone diminishes Ca2+ overload induced by hypoxia/reoxygenation in cardiomyocytes by inhibiting late sodium current and reverse-Na+/Ca2+ exchange current, Pharmacology. 105 (2020) 63–72. [CrossRef] [PubMed] [Google Scholar]
  • Yu S, Li G, Huang CL, Lei M, Wu L, Late sodium current associated cardiac electrophysiological and mechanical dysfunction, Pflugers Arch. 470 (2018) 461–469. [CrossRef] [PubMed] [Google Scholar]
  • Lin Q, Zuo W, Liu Y, Wu K, Liu Q, NAD+ and cardiovascular diseases, Clin Chim Acta. 515 (2021) 104–110. [CrossRef] [Google Scholar]
  • Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L, The arrhythmogenic consequences of increasing late INa in the cardiomyocyte, Cardiovasc Res. 99 (2013) 600–611. [CrossRef] [PubMed] [Google Scholar]
  • Antzelevitch C, Nesterenko V, Shryock JC, Rajamani S, Song Y, Belardinelli L, The role of late INa in development of cardiac arrhythmias, Handb Exp Pharmacol. 221 (2014) 137–168. [CrossRef] [PubMed] [Google Scholar]
  • Serio S, Pagiatakis C, Musolino E, et al. Cardiac aging is promoted by pseudohypoxia increasing p300-induced glycolysis, Circ Res. 133 (2023) 687–703. [CrossRef] [PubMed] [Google Scholar]
  • Chen C, Zhou M, Ge Y, Wang X, SIRT1 and aging related signaling pathways, Mech Ageing Dev. 187 (2020) 111215. [CrossRef] [Google Scholar]
  • Matasic DS, Yoon JY, McLendon JM, et al. Modulation of the cardiac sodium channel NaV1.5 peak and late currents by NAD+ precursors, J Mol Cell Cardiol. 141 (2020) 70–81. [CrossRef] [Google Scholar]
  • Qian C, Ma J, Zhang P, et al. Resveratrol attenuates the Na+-dependent intracellular Ca2+ overload by inhibiting H2O2-induced increase in late sodium current in ventricular myocytes, PLoS one. 7 (2012) e51358. [CrossRef] [Google Scholar]
  • Miranda VM, Beserra SS, Campos DR. Inotropic and Antiarrhythmic Transmural Actions of Ranolazine in a Cellular Model of Type 3 Long QT Syndrome, Arq Bras Cardiol. 114 (2020) 732–735. [Google Scholar]
  • Vikram A, Lewarchik CM, Yoon JY, et al. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel, Nat Med. 23 (2017) 361–367. [CrossRef] [PubMed] [Google Scholar]
  • Yang HY, Lin FZ, Yang HW, et al. The effect of Sirt1 deficiency on Ca2+ and Na+ regulation in mouse ventricular myocytes, J Cell Mol Med. 24 (2020) 6762–6772. [CrossRef] [PubMed] [Google Scholar]
  • Ma J, Luo A, Wu L, et al. Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes, Am J Physiol Cell Physiol. 302 (2012) C1141–51. [CrossRef] [PubMed] [Google Scholar]
  • Mohler PJ, Hund TJ, Role of CaMKII in cardiovascular health, disease, and arrhythmia, Heart Rhythm. 8 (2011) 142–144. [CrossRef] [Google Scholar]
  • Liang F, Fan P, Jia J, et al. Inhibitions of late INa and CaMKII act synergistically to prevent ATX-II- induced atrial fibrillation in isolated rat right atria, J Mol Cell Cardiol. 94 (2016) 122–130. [CrossRef] [Google Scholar]
  • Kornyeyev D, El-Bizri N, Hirakawa R, et al. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin. American journal of physiology, Am J Physiol Heart Circ Physiol. 310 (2016) H426–H435. [CrossRef] [PubMed] [Google Scholar]
  • Burashnikov A, Antzelevitch C, Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation, Pacing Clin Electrophysiol. 29 (2006) 290–295. [CrossRef] [PubMed] [Google Scholar]
  • Philippaert, K., Kalyaanamoorthy, S., Fatehi, M., et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circ. 143 (2021) 2188–2204. [CrossRef] [PubMed] [Google Scholar]
  • Kourampi I, Katsioupa M, Oikonomou E, et al. The role of ranolazine in heart failure-current concepts. Am J Cardiol. 209(2023) 92–103. [CrossRef] [Google Scholar]
  • Cempaka DKS, Andrianto A, Al-Farabi MJ, et al. Efficacy of ranolazine to improve diastolic performance in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur Cardiol. 189(2023) e02. [Google Scholar]
  • Wu D, Hu Q, Liu X, et al. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide. 46(2015) 204–12. [CrossRef] [Google Scholar]
  • Liu J, Ai Y, Niu X, et al. Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1-p53 activation. Chem Biol Interact. 317(2020) 108972. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.