Open Access
Issue
BIO Web Conf.
Volume 125, 2024
The 10th International Conference on Agricultural and Biological Sciences (ABS 2024)
Article Number 03002
Number of page(s) 15
Section Biological Science and Microbiology
DOI https://doi.org/10.1051/bioconf/202412503002
Published online 23 August 2024
  • R. Baharfar, N. Shariati, An efficient one-pot synthesis of novel isatin-based 2-amino thiazol-4-one conjugates using MgO nanoparticles in aqueos media. C. R. Chim. 17, 5, pp. 413–419. (2014). https://doi.org/10.1016/j.crci.2013.08.010. [CrossRef] [Google Scholar]
  • R. Koçak, M. Okcu, K. Haliloğlu, A. Türkoğlu, A. Pour-Aboughadareh, B. Jamshidi, et al. Magnesium oxide nanoparticles: an influential element in cowpea (vigna unguiculata l. walp.) tissue culture. J. Agron. vol. 13(6). (2023). DOI: 10.3390/agronomy13061646 [Google Scholar]
  • N. T. T. Nguyen, L. M. Nguyen, T. T. T. Nguyen, U. P. N. Tran, D. T. C. Nguyen and T. V. Tran. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. Chemosphere. vol. 312 Pages 137301. (2023). DOI:https://doi.org/10.1016/j.chemosphere.2022.137301 [CrossRef] [PubMed] [Google Scholar]
  • S. Kaushik, A. Ranjan, A. K. Singh and G. Sirhindi. Methyl jasmonate reduces cadmium toxicity by enhancing phenol and flavonoid metabolism and activating the antioxidant defense system in pigeon pea (Cajanus cajan). Chemosphere. 346 Pages 140681 (2024) PMCID: 37951403 DOI: 10.1016/j.chemosphere.2023. [CrossRef] [PubMed] [Google Scholar]
  • S. Sharma, A. Singh and B. Singh. Characterization of in vitro antioxidant activity, bioactive components, and nutrient digestibility in pigeon pea (Cajanus cajan) as influenced by germination time and temperature. J. Food Biochem. 43 Issue 2 Pages e12706 (2019). DOI: https://doi.org/10.1111/jfbc.12706 [CrossRef] [Google Scholar]
  • E. M. Hassan, A. A. Matloub, M. E. Aboutabl, N. A. Ibrahim and S. M. Mohamed. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition. Pharm. Biol. 54 Issue 8 Pages 1380–1391. (2016). DOI: 10.3109/13880209.2015.1078383 [CrossRef] [PubMed] [Google Scholar]
  • R. N. Okigbo and O. D. Omodamiro. Antimicrobial effect of leaf extracts of pigeon pea (Cajanus cajan (L.) Millsp.) on some human pathogens. J. Herbs, Spices Medicinal Plants. 12 Issue 1-2 Pages 117–127. (2007). DOI: 10.1300/J044v12n01_11. [CrossRef] [Google Scholar]
  • B. I. Avalos, G. A. Ojeda, E. D. Spinnenhirn, B. A. Acevedo and M. M. Vallejos. Evaluation of phenolic compounds and antioxidant capacity in Mucuna pruriens and Cajanus cajan pods extracts. Food Chem. 3(2023). DOI: 10.1016/j.focha.2023.100503 [Google Scholar]
  • T. I. Indira, K. H. Burhan, R. Manurung and A. Widiana. Enhancement of essential oil yield from melaleuca leucadendra l. leaves by lignocellulose degradation pre-treatment using filamentous fungi. J. Bioresour. Bioprod. 6 Issue 4 Pages 379–386. (2021). DOI: https://doi.org/10.1016/j.jobab.2021.02.010 [CrossRef] [Google Scholar]
  • I. G. Munteanu and C. Apetrei. Analytical methods used in determining antioxidant activity: a review. Int. J. Mol. Sci. 22 Issue 7 (2021). DOI: 10.3390/ijms22073380 [Google Scholar]
  • G. Bjørklund and S. Chirumbolo. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutr. J. 33 Pages 311–321. (2017). DOI: https://doi.org/10.1016/j.nut.2016.07.018 [CrossRef] [Google Scholar]
  • P. Rajendran, N. Nandakumar, T. Rengarajan, R. Palaniswami, E. N. Gnanadhas, U. Lakshminarasaiah, et al. Antioxidants and human diseases. Clin. Chim. Acta. 436 Pages 332–347 (2014). DOI: https://doi.org/10.1016/j.cca.2014.06.004 [CrossRef] [Google Scholar]
  • K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos and D. Hawkins Byrne. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19 Issue 6 Pages 669–675. (2006). DOI: https://doi.org/10.1016/j.jfca.2006.01.003 [CrossRef] [Google Scholar]
  • M. Carocho and I. C. F. R. Ferreira. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. FCT. 51 Pages 15–25. (2013). DOI: https://doi.org/10.1016/j.fct.2012.09.021 [Google Scholar]
  • N. John Sushma, D. Prathyusha, G. Swathi, T. Madhavi, B. Deva Prasad Raju, K. Mallikarjuna, et al. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appl. Nanosci. 6 Issue 3 Pages 437–444. (2016). DOI: 10.1007/s13204-015-0455-1 [CrossRef] [Google Scholar]
  • S. Sivapalan, S. Dharmalingam, V. Ashokkumar, V. Venkatesan and M. Angappan. Evaluation of the anti-inflammatory and antioxidant properties and isolation and characterization of a new bioactive compound, 3,4,9-trimethyl-7-propyldecanoic acid from Vitex negundo. J. Ethnopharmacol. 319 Pages 117314. (2024). DOI: https://doi.org/10.1016/j.jep.2023.117314 [CrossRef] [Google Scholar]
  • M. H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M. H. Siddique, S. Hayat, et al. Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines. Front. Microbiol. 14. (2023). DOI: 10.3389/fmicb.2023.1188743 [CrossRef] [Google Scholar]
  • D. A. Skoog, F. J. Holler and T. A. Nieman. Raman spectroscopy. Principles of instrumental analysis. 5 Pages 429–444 (1998) [Google Scholar]
  • J. Rumpf, R. Burger and M. Schulze. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 233 Pages 123470. (2023). DOI: https://doi.org/10.1016/j.ijbiomac.2023.123470 [CrossRef] [Google Scholar]
  • E. E. Iweala, W. O. Evbakhavbokun and E. N. Maduagwu. Antioxidant and Hepatoprotective effect of cajanus cajan in n-nitrosodiethylamine-induced liver damage. Sci. Pharm. 87 Issue 3. (2019). DOI: 10.3390/scipharm87030024 [CrossRef] [Google Scholar]
  • S. Siddique, Z. Parveen, B. Firdaus e and S. Mazhar. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Mazhar. Arab. J. Chem. 13 Issue 1 Pages 67–74. (2020). DOI: https://doi.org/10.1016/j.arabjc.2017.01.018 [CrossRef] [Google Scholar]
  • N. Wu, K. Fu, Y.-J. Fu, Y.-G. Zu, F.-R. Chang, Y.-H. Chen, et al. Antioxidant activities of extracts and main components of pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules. 14 Issue 3 Pages 1032–1043. (2009). DOI: 10.3390/molecules14031032. [CrossRef] [PubMed] [Google Scholar]
  • B. Xu, G. Cai, Y. Gao, M. Chen, C. Xu, C. Wang, et al. Nanofibrous dressing with nanocomposite monoporous microspheres for chemodynamic antibacterial therapy and wound healing. ACS Omega. 8 Issue 41 Pages 38481–38493. (2023). DOI: 10.1021/acsomega.3c05271 [CrossRef] [PubMed] [Google Scholar]
  • S. Podder, D. Chanda, A. K. Mukhopadhyay, A. De, B. Das, A. Samanta, et al. Effect of morphology and concentration on crossover between antioxidant and pro-oxidant activity of MgO nanostructures. Inorg. Chem. 57 Issue 20 Pages 12727–12739. (2018). DOI: 10.1021/acs.inorgchem.8b01938 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.