Open Access
Issue
BIO Web Conf.
Volume 125, 2024
The 10th International Conference on Agricultural and Biological Sciences (ABS 2024)
Article Number 03007
Number of page(s) 12
Section Biological Science and Microbiology
DOI https://doi.org/10.1051/bioconf/202412503007
Published online 23 August 2024
  • The global challenge of cancer, Nat. Cancer 1, 1–2 (2020). [Google Scholar]
  • A. Naeem, P. Hu, M. Yang, J. Zhang, Y. Liu, W. Zhu, Q. Zheng, Natural products as anticancer agents: Current status and future perspectives, Molecules 27, 8367 (2022). [CrossRef] [PubMed] [Google Scholar]
  • I. Padhy, P. Paul, T. Sharma, S. Banerjee, A. Mondal, Molecular mechanisms of action of eugenol in cancer: Recent trends and advancement, Life 12, 1795 (2022). [CrossRef] [PubMed] [Google Scholar]
  • A. Abdou, A. Elmakssoudi, A. El Amrani, J. JamalEddine, M. Dakir, Recent advances in chemical reactivity and biological activities of eugenol derivatives, Med. Chem. Res. 30, 1011–1030 (2021). [CrossRef] [Google Scholar]
  • J.N. Barboza, C. da Silva Maia Bezerra Filho, R.O. Silva, J.V.R. Medeiros, D.P. de Sousa, An overview on the anti-inflammatory potential and antioxidant profile of eugenol, Oxid. Med. Cell. Longev. 1–9 (2018). [Google Scholar]
  • S.S. Islam, I. Al‐Sharif, A. Sultan, A. Al‐Mazrou, A. Remmal, A. Aboussekhra, Eugenol potentiates cisplatin anti‐cancer activity through inhibition of ALDH‐positive breast cancer stem cells and the NF‐κB signaling pathway, Mol. Carcinog. 57, 333–346 (2018). [CrossRef] [PubMed] [Google Scholar]
  • P. Choudhury, A. Barua, A. Roy, R. Pattanayak, M. Bhattacharyya, P. Saha, Eugenol emerges as an elixir by targeting β-catenin, the central cancer stem cell regulator in lung carcinogenesis: an in vivo and in vitro rationale, Food Funct. 12, 1063–1078 (2021). [CrossRef] [PubMed] [Google Scholar]
  • S.K. Jaganathan, A. Mazumdar, D. Mondhe, M. Mandal, Apoptotic effect of eugenol in human colon cancer cell lines, Cell Biol. Int. 35, 607–615 (2011). [CrossRef] [PubMed] [Google Scholar]
  • E. Dervis, A. Yurt Kilcar, E.I. Medine, V. Tekin, B. Cetkin, E. Uygur, F.Z.B. Muftuler, In vitro incorporation of radioiodinated eugenol on adenocarcinoma cell lines (Caco2, MCF7, and PC3)., Cancer Biother. Radiopharm. 32, 75–81 (2017). [Google Scholar]
  • M.L. Abdullah, O. Al-Shabanah, Z.K. Hassan, M.M. Hafez, Eugenol-induced autophagy and apoptosis in breast cancer cells via PI3K/AKT/FOXO3A pathway inhibition, Int. J. Mol. Sci. 22, 9243 (2021). [CrossRef] [Google Scholar]
  • P. Happy Kurnia, E. Andika Bachtiar, Q. Faqrizal Ria, F. Fadhil, D. Anita, Eugenol isolated from Syzygium aromaticum inhibits HeLa cancer cell migration by altering epithelial-mesenchymal transition protein regulators, J. Appl. Pharm. Sci. 11, 49–53 (2021). [Google Scholar]
  • L.A. Al‐Kharashi, T. Bakheet, W.A. AlHarbi, N. Al‐Moghrabi, A. Aboussekhra, Eugenol modulates genomic methylation and inactivates breast cancer‐associated fibroblasts through E2F1‐dependent downregulation of DNMT1/DNMT3A, Mol. Carcinog. 60, 784–795 (2021). [CrossRef] [PubMed] [Google Scholar]
  • A.T. Zari, T.A. Zari, K.R. Hakeem, Anticancer properties of eugenol: A review, Molecules 26, 7407 (2021). [CrossRef] [PubMed] [Google Scholar]
  • S. Elmore, Apoptosis: A review of programmed cell death, Toxicol. Pathol. 35 495–516 (2007). [CrossRef] [PubMed] [Google Scholar]
  • D. Westaby, J.M. Jimenez-Vacas, A. Padilha, A. Varkaris, S.P. Balk, J.S. de Bono, A. Sharp, Targeting the intrinsic apoptosis pathway: A window of opportunity for prostate cancer, Cancers (Basel). 14 51 (2021). [CrossRef] [PubMed] [Google Scholar]
  • G.-C. Kim, D.-S. Choi, J.-S. Lim, H.-C. Jeong, I.-R. Kim, M.-H. Lee, B.-S. Park, Caspases-dependent apoptosis in human melanoma cell by eugenol, Korean J. Anat. 245–253 (2006). [Google Scholar]
  • C.-B. Yoo, K.-T. Han, K.-S. Cho, J. Ha, H.-J. Park, J.-H. Nam, U.-H. Kil, K.-T. Lee, Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells, Cancer Lett. 225, 41–52 (2005). [CrossRef] [PubMed] [Google Scholar]
  • U.-H. Kil, K.H. Lee, K.-T. Lee, J.-Y. Jin, Eugenol induces a reactive oxygen speciesmediated apoptosis in HL-60 human promyelocytic leukemia cell, Korean J. Hematol. 40, 65 (2005). [CrossRef] [Google Scholar]
  • S.-H. Shin, J.-H. Park, G.-C. Kim, B.-S. Park, Y.-G. Gil, C.-H. Kim, The mechanism of apoptosis induced by eugenol in human osteosarcoma cells, J. Korean Assoc. Oral Maxillofac. Surg. 33, 20–27 (2007). [Google Scholar]
  • W.-Z. Liang, C.-T. Chou, S.-S. Hsu, W.-C. Liao, P. Shieh, D.-H. Kuo, H.-W. Tseng, C.-C. Kuo, C.-R. Jan, The involvement of mitochondrial apoptotic pathway in eugenolinduced cell death in human glioblastoma cells, Toxicol. Lett. 232, 122–132 (2015). [CrossRef] [Google Scholar]
  • S.K. Jaganathan, E. Supriyanto, Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells, Molecules 17, 6290–6304 (2012). [CrossRef] [PubMed] [Google Scholar]
  • J.S. Fridman, S.W. Lowe, Control of apoptosis by p53, Oncogene 22, 9030–9040 (2003). [CrossRef] [PubMed] [Google Scholar]
  • M. Fathy, M.A. Fawzy, H. Hintzsche, T. Nikaido, T. Dandekar, E.M. Othman, Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation, Molecules 24, 3979 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Y.-H. Kim, B.-S. Park, The effect of eugenol on the induction of apoptosis in HSC-2 human oral squamous cell carcinoma, J. Korean Soc. Dent. Hyg. 15, 523–529 (2015). [CrossRef] [Google Scholar]
  • K. Thu, I. Soria-Bretones, T. Mak, D. Cescon, Targeting the cell cycle in breast cancer: towards the next phase, Cell Cycle 17, 1871–1885 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Y. Niu, J. Xu, T. Sun, Cyclin-dependent kinases 4/6 inhibitors in breast cancer: Current status, resistance, and combination strategies, J. Cancer, 10, 5504–5517 (2019). [CrossRef] [Google Scholar]
  • L. Ding, J. Cao, W. Lin, H. Chen, X. Xiong, H. Ao, M. Yu, J. Lin, Q. Cui, The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer, Int. J. Mol. Sci. 21, 1960 (2020). [CrossRef] [Google Scholar]
  • B.-B.R. Choi, S.-H. Shin, U.-K. Kim, J.-W. Hong, G.-C. Kim, S phase cell cycle arrest and apoptosis is induced by eugenol in G361 human melanoma cells, Int. J. Oral Biol. 36, 129–134 (2011). [Google Scholar]
  • X. Yan, G. Zhang, F. Bie, Y. Lv, Y. Ma, M. Ma, Y. Wang, X. Hao, N. Yuan, X. Jiang, Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells, Sci. Rep. 7, 12920 (2017). [CrossRef] [Google Scholar]
  • R. Ghosh, N. Nadiminty, J.E. Fitzpatrick, W.L. Alworth, T.J. Slaga, A.P. Kumar, Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity, J. Biol. Chem. 280, 5812–5819 (2005). [CrossRef] [Google Scholar]
  • M. Ma, Y. Ma, G.-J. Zhang, R. Liao, X.-F. Jiang, X.-X. Yan, F.-J. Bie, X.-B. Li, Y.-H. Lv, Eugenol alleviated breast precancerous lesions through HER2/PI3K-AKT pathway-induced cell apoptosis and S-phase arrest, Oncotarget 8, 56296–56310 (2017). [CrossRef] [PubMed] [Google Scholar]
  • L. Yin, Z. Sun, Q. Ren, X. Su, D. Zhang, Methyl eugenol induces potent anticancer effects in RB355 human retinoblastoma cells by inducing autophagy, cell cycle arrest and inhibition of PI3K/mTOR/Akt signalling pathway., J. Buon. 23, 1174–1178 (2018). [Google Scholar]
  • T. Owa, H. Yoshino, K. Yoshimatsu, T. Nagasu, Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents, Curr. Med. Chem. 8, 1487–1503 (2012). [Google Scholar]
  • P. Manikandan, G. Vinothini, R. Vidya Priyadarsini, D. Prathiba, S. Nagini, Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG, Invest. New Drugs 29, 110–117 (2011). [CrossRef] [PubMed] [Google Scholar]
  • S. Mohammadi Nejad, H. Özgüneş, N. Başaran, Pharmacological and toxicological properties of eugenol, Turkish J. Pharm. Sci. 14, 201–206 (2017). [CrossRef] [PubMed] [Google Scholar]
  • İ. Gülçin, Antioxidant activity of eugenol: A structure-activity relationship study, J. Med. Food 14, 975–985 (2011). [CrossRef] [PubMed] [Google Scholar]
  • S.M. Yaseen, H.A. Abid, M.A. Al-Obaidi, Disturbed levels of non-enzymatic antioxidants and malondialdehyde among makeup users, J. Tech. 2, 42–48 (2020). [CrossRef] [Google Scholar]
  • D. Bezerra, G. Militão, M. de Morais, D. de Sousa, The dual antioxidant/prooxidant effect of eugenol and its action in cancer development and treatment, Nutrients 9, 1367 (2017). [CrossRef] [PubMed] [Google Scholar]
  • G. Kaur, M. Athar, M.S. Alam, Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis, Mol. Carcinog. 49, 290–301 (2010). [CrossRef] [PubMed] [Google Scholar]
  • E. Nagababu, J.M. Rifkind, S. Boindala, L. Nakka, Assessment of antioxidant activity of eugenol in vitro and in vivo, in: Methods Mol. Biol., pp. 165–180, (Humana Press, 2010). [CrossRef] [PubMed] [Google Scholar]
  • M. Ito, K. Murakami, M. Yoshino, Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation, Food Chem. Toxicol. 43, 461–466 (2005). [CrossRef] [Google Scholar]
  • B. Hoesel, J.A. Schmid, The complexity of NF-κB signaling in inflammation and cancer, Mol. Cancer 12, 86 (2013). [CrossRef] [Google Scholar]
  • Y. Murakami, A. Kawata, S. Fujisawa, Expression of cyclooxygenase-2, nitric oxide synthase 2 and heme oxygenase-1 mRNA induced by bis-eugenol in RAW264.7 cells and their antioxidant activity determined using the induction period method, In Vivo (Brooklyn). 31, 819–831 (2018). [Google Scholar]
  • J.L. Yeh, J.H. Hsu, Y.S. Hong, J.R. Wu, J.C. Liang, B.N. Wu, I.J. Chen, S.F. Liou, Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by downregulating NF-κB and AP-1 through inhibition of MAPKs and Akt/IκBα signaling pathways in macrophages, Int. J. Immunopathol. Pharmacol. 24, 345–356 (2011). [CrossRef] [Google Scholar]
  • N. Hashemi Goradel, M. Najafi, E. Salehi, B. Farhood, K. Mortezaee, Cyclooxygenase‐2 in cancer: A review, J. Cell. Physiol. 234, 5683–5699 (2019). [CrossRef] [PubMed] [Google Scholar]
  • A. Marchese, R. Barbieri, E. Coppo, I.E. Orhan, M. Daglia, S.F. Nabavi, M. Izadi, M. Abdollahi, S.M. Nabavi, M. Ajami, Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint, Crit. Rev. Microbiol. 43, 668–689 (2017). [CrossRef] [PubMed] [Google Scholar]
  • S.S. Kim, O.-J. Oh, H.-Y. Min, E.-J. Park, Y. Kim, H.J. Park, Y. Nam Han, S.K. Lee, Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells, Life Sci. 73, 337–348 (2003). [CrossRef] [PubMed] [Google Scholar]
  • F. das Chagas Pereira de Andrade, A.N. Mendes, Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways, Sci. Rep. 10, 16204 (2020). [CrossRef] [Google Scholar]
  • K. Barefoot, D. Curtis, W. Jolliff, J.R. Nicholson, R. Omohundro, Antiangiogenic Agents in Cancer Therapy, (Humana Press, Totowa, NJ, 1999). [Google Scholar]
  • K.M. Cook, W.D. Figg, Angiogenesis inhibitors: Current strategies and future prospects, CA. Cancer J. Clin. 60, 222–243 (2010). [CrossRef] [PubMed] [Google Scholar]
  • P. Manikandan, R.S. Murugan, R.V. Priyadarsini, G. Vinothini, S. Nagini, Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG, Life Sci. 86, 936–941 (2010). [CrossRef] [PubMed] [Google Scholar]
  • P. Happy Kurnia, T.R. Dhanang Puruhita, H. Muhammad Nazhif, C. Rizq Threevisca, Eugenol-loaded chitosan nanoparticle induces apoptosis, inhibits cell migration and epithelial to mesenchymal transitionprocess in human cervical cancer cell line hela cells, Eur. J. Mol. Clin. Med. 7, 1184–1197 (2020). [Google Scholar]
  • H. Nam, M.-M. Kim, Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells, Food Chem. Toxicol. 55, 106–112 (2013). [CrossRef] [Google Scholar]
  • R. Sever, J.S. Brugge, Signal transduction in cancer, Cold Spring Harb. Perspect. Med. 5, a006098–a006098, (2015). [CrossRef] [Google Scholar]
  • X. Shi, W. Zhang, X. Bao, X. Liu, M. Yang, C. Yin, Eugenol modulates the NOD1NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells, Front. Endocrinol. (Lausanne). 14 (2023). [Google Scholar]
  • M. Djaldetti, H. Bessler, Eugenol as a modulator of the immune dialogue between human mononuclears and colon cancer cells, J. Mol. Pathophysiol. 6, 1 (2017). [CrossRef] [Google Scholar]
  • M.R. Charan Raja, Versatile and synergistic potential of eugenol: A review, Pharm. Anal. Acta 06 (2015). [CrossRef] [Google Scholar]
  • A. Hussain, K. Brahmbhatt, A. Priyani, M. Ahmed, T.A. Rizvi, C. Sharma, Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells, Cancer Biother. Radiopharm. 26, 519–527 (2011). [Google Scholar]
  • M.L. Abdullah, M.M. Hafez, A. Al-Hoshani, O. Al-Shabanah, Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells, BMC Complement. Altern. Med. 18, 321 (2018). [CrossRef] [Google Scholar]
  • A. Sarkar, S. Das, A. Rahaman, A. Das Talukdar, S. Bhattacharjee, D.P. Mandal, Eugenol and capsaicin exhibit anti-metastatic activity via modulating TGF-β signaling in gastric carcinoma, Food Funct. 11, 9020–9034 (2020). [CrossRef] [PubMed] [Google Scholar]
  • D. Pal, S. Banerjee, S. Mukherjee, A. Roy, C.K. Panda, S. Das, Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: Downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway, J. Dermatol. Sci. 59, 31–39 (2010). [CrossRef] [Google Scholar]
  • I. Al-Sharif, A. Remmal, A. Aboussekhra, Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation, BMC Cancer 13, 600 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J. Baharara, T. Ramezani, M. Mousavi, K. Kouhestanian, Eugenol suppressed metastasis of breast carcinoma cells and migration by regulation of MMP-9 & paxilin gene expression, Sch. J. Agric. Vet. Sci. 2, 125–130 (2015). [Google Scholar]
  • Z. Cui, Z. Liu, J. Zeng, L. Chen, Q. Wu, J. Mo, G. Zhang, L. Song, W. Xu, S. Zhang, X. Guo, Eugenol inhibits non‐small cell lung cancer by repressing expression of NF‐ κB‐regulated TRIM59, Phyther. Res. 33, 1562–1569 (2019). [CrossRef] [PubMed] [Google Scholar]
  • Y. Duan, X. Huang, B. Qiao, R. Ma, J. Li, Eugenol inhibits the biological activities of an oral squamous cell carcinoma cell line SCC9 via targeting MIF, Anticancer. Agents Med. Chem. 22, 2799–2806 (2022). [CrossRef] [Google Scholar]
  • Y. Keneda, Atsushi; Tsukada, DNA and Histone Methylation as Cancer Targets, (Springer International Publishing, Cham, 2017). [CrossRef] [Google Scholar]
  • P. Trojer, Histone methylation modifiers in medical therapeutics, in: Med. Epigenetics, (Elsevier, pp. 693–720, 2021). [CrossRef] [Google Scholar]
  • Y. Song, F. Wu, J. Wu, Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives, J. Hematol. Oncol. 9, 49, (2016). [CrossRef] [Google Scholar]
  • R. Rupaimoole, H.-D. Han, G. Lopez-Berestein, A.K. Sood, MicroRNA therapeutics: principles, expectations, and challenges, Chin. J. Cancer 30 (2011) 368–370. [CrossRef] [Google Scholar]
  • A.R. Raheem, O.F. Abdul-Rasheed, O.S. Khattab, A.Z. Alsammarraie, H. Al-Aubaidy, H.A. Abid, Circulating miRNA-373 and vascular endothelial growth factor as potential biomarkers for early detection of breast cancer, Indian J. Clin. Biochem. (2024). [Google Scholar]
  • E. Ghodousi-Dehnavi, R.H. Hosseini, M. Arjmand, S. Nasri, Z. Zamani, A metabolomic investigation of eugenol on colorectal cancer cell line HT-29 by modifying the expression of APC, p53, and KRAS genes, Evidence-Based Complement. Altern. Med. 2021, 1–9 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.