Open Access
Issue |
BIO Web Conf.
Volume 126, 2024
International Conference on Advance in Energy, Ecology and Agriculture (AEEA2024)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/bioconf/202412601040 | |
Published online | 28 August 2024 |
- K. Zhou, F. Kong, H. Yin, Urban flood risk management needs nature-based solutions: a coupled social-ecological system perspective, npj Urban Sustain, 4, 25 (2024) DOI: 10.1038/s42949-024-00162-z [Google Scholar]
- D. Lallemant, P. Hamel, M. Balbi, T. N. Lim, R. Schmitt, S. Win, Nature-based solutions for flood risk reduction: A probabilistic modeling framework, One Earth, 4,9 (2021) DOI: 10.1016/j.oneear.2021.08.010 [Google Scholar]
- The Global Assessment Report on Biodiversity and Ecosystem Services (2019), https://files.ipbes.net/ipbes-web-prod-publicfiles/inline/files/ipbes_global_assessment_report_summary_for_policymakers.pdf [Google Scholar]
- T. Dunlop, D. Khojasteh, E. Cohen-Shacham, The evolution and future of research on Nature-based Solutions to address societal challenges, Commun. Earth Environ., 5, 132 (2024) https://doi.org/10.1038/s43247-024-01308-8 [CrossRef] [Google Scholar]
- L. Bunclark, I.M.D.L.V. Hernandez, Scientific mapping of research on nature-based solutions for sustainable water management, Water Resour. Manag., 36, 4499-4516 (2022) [CrossRef] [Google Scholar]
- I. Tikhonova, T. Guseva, Nature-Based Solutions in Industrial Environmental Monitoring Programmes, Proceedings of the 21st International Multidisciplinary Scientific GeoConference SGEM 2021 Bulgaria, 21, 7.2 (2021) DOI: 10.5593/sgem2021/5.1/s20.042 [Google Scholar]
- Maximizing Benefits: Strategies for Community Resilience. Center for Climate and Energy Solutions (C2ES) (2018), https://www.c2es.org/wpcontent/uploads/2018/12/strategies-for-community-resilience.pdf [Google Scholar]
- A.V. Sanson, A.S. Masten, Climate change and resilience: Developmental science perspectives, International Journal of Behavioral Development, 48 (2) (2024) https://doi.org/10.1177/01650254231186332 [Google Scholar]
- The Adaptation Principles. A Guide for Designing Strategies for Climate Change Adaptation and Resilience. The World Bank (2020), https://openknowledge.worldbank.org/bitstreams/42887578-b395-504a-936021a7d4e9be56/download [Google Scholar]
- T.Y. Minayeva, O. Bragg, A.A. Sirin, Towards ecosystem-based restoration of peatland biodiversity, Mires Peat, 19 (2017) [Google Scholar]
- L. Ikkala, A.-K. Ronkanen, O. Utriainen, B. Kløve, H. Marttila, Peatland subsidence enhances cultivated lowland flood risk, Soil and Tillage Research, 212 (2021) DOI:10.1016/j.still.2021.105078 [CrossRef] [Google Scholar]
- Y. Song, N. Kirkwood, C. Maksimovic, X. Zheng, D. O’Connor, Y. Jin, D. Hou, Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review, Science of The Total Environment, 663 (2019) DOI: 10.1016/j.scitotenv.2019.01.347 [Google Scholar]
- Guideline for the Management of Contaminated Sites. Canada, New Brunswick (2023), https://atlanticrbca.com/wp-content/uploads/2023/04/2023March_CSM_Guideline_V3_-_FINAL_EN.pdf [Google Scholar]
- N. Frantzeskaki, S. Borgström, L. Gorissen, M. Egermann, F. Ehnert, Nature-based solutions accelerating urban sustainability transitions in cities: Lessons from Dresden, Genk and Stockholm Cities, Theory and Practice of Urban Sustainability Transitions (2017) DOI:10.1007/978-3-319-56091-5_5 [Google Scholar]
- E. Cohen-Shacham, A. Andrade, J. Dalton, N. Dudley, M. Jones, C. Kumar, G. Walters, Core principles for successfully implementing and upscaling nature-based solutions, Environmental Science & Policy, 98 (2019) DOI:10.1016/j.envsci.2019.04.014 [CrossRef] [Google Scholar]
- I. Hussain, M. Puschenreiter, S. Gerhard, P. Schöftner, S. Yousaf, A. Wang, J. H. Syed, T. G. Reichenauer, Rhizoremediation of petroleum hydrocarbon contaminated soils: Improvement opportunities and field applications, Environ. Exp. Bot., 147 (2018) DOI: 10.1016/j.envexpbot.2017.12.016 [Google Scholar]
- M. Vocciante, A. Finocchi, A. De Folly D’Auris, A. Conte, J. Tonziello, A. Pola, A. P. Reverberi, Enhanced oil spill remediation by adsorption with interlinked multilayered grapheme, Materials, 12, 2231 (2019) [CrossRef] [PubMed] [Google Scholar]
- M. Grifoni, E. Franchi, D. Fusini, M. Vocciante, M. Barbafieri, F. Pedron, I. Rosellini, G. Petruzzelli, Soil remediation: Towards a resilient and adaptive approach to deal with the ever-changing environmental challenges, Environments, 9, 18 (2022) [CrossRef] [Google Scholar]
- L. Panchenko, A. Muratova, E. Dubrovskaya, S. Golubev, O. Turkovskaya, Natural and Technical Phytoremediation of Oil-Contaminated Soil, Life, 13 (1), 177 (2023) https://doi.org/10.3390/life13010177 [Google Scholar]
- S.Z. Aziz, S.H. Jazza, H.N. Dageem, S.R. Banoon, B.A. Balboul, M.A. Abdelzaher, Bacterial biodegradation of oil-contaminated soil for pollutant abatement contributing to achieve sustainable development goals: A comprehensive review, Results in Engineering, 22, 102083 (2024) DOI: 10.1016/j.rineng.2024.102083 [CrossRef] [Google Scholar]
- N. Ali, N. Dashti, M. Khanafer, Bioremediation of soils saturated with spilled crude oil, Sci Rep, 10, 1116 (2020) https://doi.org/10.1038/s41598-019-57224-x [CrossRef] [PubMed] [Google Scholar]
- E. Franchi, A. Cardaci, I. Pietrini, D. Fusini, A. Conte, A. De Folly D’Auris, M. Grifoni, F. Pedron, M. Barbafieri, G. Petruzzelli, et al, Nature-Based Solutions for Restoring an Agricultural Area Contaminated by an Oil Spill, Plants, 11 (17), 2250 (2022) https://doi.org/10.3390/plants11172250 [CrossRef] [PubMed] [Google Scholar]
- Report on the State of Environment and Environmental Protection in the Russian Federation in 2022, https://www.mnr.gov.ru/docs/gosudarstvennye_doklady/gosudarstvennyy_doklad_o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii_v_2022_/ [Google Scholar]
- National Classification System for Contaminated Sites Guidance Document. Canadian CCME. National Classification System for Contaminated Sites: Guidance Document. Canadian Council of Ministers of the Environment, Winnipeg (2008), https://www.ccme.ca/en/res/ncscs_guidance_e.pdf [Google Scholar]
- Federal Contaminated Sites Action Plan (FCSAP): Supplemental Guidance on Implementation of Canada-wide Standard for Petroleum Hydrocarbons in Soil at Federal Contaminated Sites (2022), https://publications.gc.ca/site/eng/9.909767/publication.html [Google Scholar]
- N. Das, P. Chandran, Microbial degradation of petroleum hydrocarbon contaminants: an overview, Biotechnol. Res. Int. 2011, 941810 (2011) DOI: 10.4061/2011/941810 [Google Scholar]
- A.B. Al-Hawash, M.A. Dragh, S. Li, A. Alhujaily, H.A. Abbood, X. Zhang, F. Ma, Principles of microbial degradation of petroleum hydrocarbons in the environment, Egyptian Journal of Aquatic Research, 44, 2 (2018) https://doi.org/10.1016/j.ejar.2018.06.001 [Google Scholar]
- B.A. Mekonnen, T.A. Aragaw, M.B. Genet, Bioremediation of petroleum hydrocarbon contaminated soil: a review on principles, degradation mechanisms, and advancements, Frontiers in Environmental Science, 12 (2024) DOI: 10.3389/fenvs.2024.1354422 [CrossRef] [Google Scholar]
- I. Tikhonova, S. Grosheva, S. Shlapak, E. Averochkin, M. Vartanyan, Mitigating greenhouse gases emissions in processing fossil carbon containing industrial waste, E3S Web of Conf. ESDCA2024, 510, 03002 (2024) DOI: 10.1051/e3sconf/202451003002 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.