Open Access
Issue
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
Article Number 01010
Number of page(s) 9
Section Agricultural Biotechnology for Food Improvement and Production
DOI https://doi.org/10.1051/bioconf/202412701010
Published online 13 September 2024
  • L. Tripathi, V. O. Ntui, and J. N. Tripathi, CRISPR/Cas9-based genome editing of banana for disease resistance, Curr. Opin. Plant Biol., 56, 118–126, Aug. (2020), doi: 10.1016/j.pbi.2020.05.003. [CrossRef] [Google Scholar]
  • J. O. Ighalo and A. Adeniyi, Thermodynamic modelling and temperature sensitivity analysis of banana (Musa spp.) waste pyrolysis, Appl. Sci., 1, 1086, (2019), doi: 10.1007/s42452-019-1147-3. [Google Scholar]
  • M. Ranjha, S. Irfan, M. Nadeem, and S. Mahmood, A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana, Food Rev. Int., 38, 199–225, (2022), doi: 10.1080/87559129.2020.1725890. [CrossRef] [Google Scholar]
  • A. Adeniyi, S. Adeoye, J. O. Ighalo, and D. Onifade, FEA of effective elastic properties of banana fiberreinforced polystyrene composite, Mech. Adv. Mater. Struct., (2020), doi: 10.1080/15376494.2020.1712628. [Google Scholar]
  • A. Adeniyi, J. O. Ighalo, and D. Onifade, Banana and plantain fiber-reinforced polymer composites, J. Polym. Eng., 39, (2019), doi: 10.1515/polyeng-2019-0085. [Google Scholar]
  • O. Akatwijuka, M. Gepreel, A. Abdel-Mawgood, M. Yamamoto, Y. Saito, and A. Hassanin, Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications, Biomass Convers. Biorefinery, 14, (2022), doi: 10.1007/s13399-022-02819-0. [Google Scholar]
  • J. N. Tripathi, V. O. Ntui, M. Ron, S. K. Muiruri, A. Britt, and L. Tripathi, CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding, Commun. Biol., 2, 46, Jan. (2019), doi: 10.1038/s42003-019-0288-7. [CrossRef] [Google Scholar]
  • R. Thangavelu et al., Identification of sources resistant to a virulent Fusarium wilt strain (VCG 0124) infecting Cavendish bananas, Sci. Rep., 11, 3183, Feb. (2021), doi: 10.1038/s41598-021-82666-7. [CrossRef] [Google Scholar]
  • K. Jacobsen et al., Seed degeneration of banana planting materials: strategies for improved farmer access to healthy seed, Plant Pathol., 68, 207–228, Feb. (2019), doi: 10.1111/ppa.12958. [CrossRef] [Google Scholar]
  • B. R. Hastilestari, Pengaruh cekaman panas terhadap daun stroberi (Fragaria L. Elsanta),” Jul. (2015). doi: 10.13057/psnmbi/m010435. [Google Scholar]
  • R. R. R. Annisa, A. Setiaji, and A. B. Sasongko, In Vitro Shoot Induction of Musa acuminata cv. Mas Kirana, Quagga J. Pendidik. dan Biol., 13, 34, (2020), doi: 10.25134/quagga.v13i1.3431. [CrossRef] [Google Scholar]
  • G. Martin et al., Chromosome reciprocal translocations have accompanied subspecies evolution in bananas, Plant J., 104, 1698–1711, Dec. (2020), doi: 10.1111/tpj.15031. [CrossRef] [PubMed] [Google Scholar]
  • K. Shepherd, Cytogenetics of the genus Musa. (1999). [Online]. Available: http://musalit.inibap.org/pdf/IN990087_en.pdf [Google Scholar]
  • M. Pillay, Classical genetics and traditional breeding in Musa, in Genetics, Genomics, and Breeding of Bananas, (2012), pp. 34–55. doi: 10.1201/b11776. [Google Scholar]
  • F. Ahmad, N. M. Martawi, Y. S. Poerba, H. de Jong, H. Schouten, and G. H. J. Kema, Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession, Theor. Appl. Genet., 133, 3409–3418, (2020), doi: 10.1007/s00122-020-03677-y. [CrossRef] [PubMed] [Google Scholar]
  • S. Chang, Y. Yen, I. Miyajima, and K. Huang, The Efficiency of Hybridization and Seed Production in Musa spp, J. Fac. Agric. Kyushu Univ., 64, 169–176, Sep. (2019), doi: 10.5109/2339043. [Google Scholar]
  • M. Fendiyanto, D. Maysha, and B. Hastilestari, In-silico Gene Editing of LCYB in Musa acuminata and Its Functional Analysis Related to Lycopene Beta-Cyclase Pathway, IOP Conf. Ser. Earth Environ. Sci., 1255, 12055, Jul. (2023), doi: 10.1088/17551315/1255/1/012055. [CrossRef] [Google Scholar]
  • R. G. Birch, PLANT TRANSFORMATION: Problems and Strategies for Practical Application, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 297–326, Jun. (1997), doi: 10.1146/annurev.arplant.48.1.297. [CrossRef] [PubMed] [Google Scholar]
  • N. Karimi, Effect of Different Growth Regulators on Callus Induction and Plant Regeneration of Satureja species, Annu. Res. Rev. Biol., 4, 2646–2654, Jan. (2014), doi: 10.9734/ARRB/2014/7938. [CrossRef] [Google Scholar]
  • T. A. Thorpe, History of plant tissue culture, Mol. Biotechnol., 37, 169–180, Sep. (2007), doi: 10.1007/s12033-007-0031-3. [CrossRef] [PubMed] [Google Scholar]
  • W. Kurniajati, F. Ahmad, D. Martanti, Herlina, W. Witjaksono, and Y. Poerba, Hybridization compatibility of wild and cultivated bananas (Musa spp.), (2024), p. 80032. doi: 10.1063/5.0187594. [Google Scholar]
  • Y. Poerba, T. Handayani, F. Ahmad, W. Witjaksono, and D. Martanti, Deskripsi Pisang: Koleksi Pusat Penelitian Biologi LIPI. (2018). [Google Scholar]
  • B. Panis, M. Nagel, and I. Van den houwe, Challenges and Prospects for the Conservation of Crop Genetic Resources in Field Genebanks, in In Vitro Collections and/or in Liquid Nitrogen, Plants, 9, p. 1634, Nov. (2020), doi: 10.3390/plants9121634. [Google Scholar]
  • T. Murashige and F. Skoog, A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures, Physiol. Plant., 15, 473–497, Jul. (1962), doi: 10.1111/j.13993054.1962.tb08052.x. [CrossRef] [Google Scholar]
  • Uma, Subbaraya, et al. Somatic embryogenesis as a tool for reproduction of genetically stable plants in banana and confirmatory field trials. Plant Cell, Tissue and Organ Culture (PCTOC), 147, pp.181–188, June(2021 https://doi.org/10.1007/s11240-021-02108-0 [CrossRef] [Google Scholar]
  • Latunra, Andi Ilham. Induksi kalus pisang barangan merah Musa acuminata Colla dengan kombinasi hormon 2, 4-D dan Bap secara in vitro. Jurnal Ilmu alam dan lingkungan, 8, 53–61 (2017). [Google Scholar]
  • P. Karintanyakit, et al. The impact of genome and 2, 4-d on callus induction from immature male flowers of seven banana cultivars. International Symposium on Tropical and Subtropical Fruits 1024, 253–255 (2011) [Google Scholar]
  • B. Fazeli-Nasab, L. Shahraki-Mojahed, M. Hassanzadeh, and F. Bidarnamani, Investigation of Antimicrobial Activity of Medicinal Plant Extracts on Bacillus cereus Isolated from Soil, Gene, Cell Tissue, In Press, (2021), doi: 10.5812/gct.115133. [Google Scholar]
  • Yoyon Riono., Zat pengatur tumbuh kinetin untuk pertumbuhan sub kultur pisang barangan (Mussa paradisiaca L) dengan metode kultur jaringan, J. AGRO INDRAGIRI, 4, 22–33, Jan. (1970), doi: 10.32520/jai.v4i1.1049. [CrossRef] [Google Scholar]
  • N. H. Baruddin and F. Kayat, Development of Malaysian Wild Bananas Seed progenies, Musa acuminata ssp. malaccensis and Musa gracilis., J. Trop. Resour. Sustain. Sci., 3, 247–251, Dec. (2015), doi: 10.47253/jtrss.v3i1.696. [Google Scholar]
  • F. Yelli, A. Titin, S. D. Utomo, and A. Pathak, Somatic embryogenesis in two cassava (Manihot esculenta Crantz) genotypes, Not. Bot. Horti Agrobot. Cluj-Napoca, 51, 13039, Feb. (2023), doi: 10.15835/nbha51113039. [CrossRef] [Google Scholar]
  • A. Azizi et al., Embryogenic callus induction of Indonesian Cassava (Menti and Adira 4) on different picloram concentrations, IOP Conf. Ser. Earth Environ. Sci., 1255, 12053, (2023), doi: 10.1088/1755-1315/1255/1/012053. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.