Open Access
Issue
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
Article Number 03001
Number of page(s) 7
Section Functional Food, Nutrigenomics and Nutrigenetic
DOI https://doi.org/10.1051/bioconf/202412703001
Published online 13 September 2024
  • S.K. Kim. Handbook of marine microalgae: biotechnology and applied phycology. (John Wiley & Sons, Ltd., 2012) [Google Scholar]
  • J.T. Anggadiredja, A. Zatnika, H. Purwanto, S. Istini. Rumput Laut. (Penerbit Swadaya, Jakarta, 2006) [Google Scholar]
  • F.G. Winarno. Teknologi Pengolahan Rumput Laut. (Pustaka Sinar Harapan, Jakarta, 1996) [Google Scholar]
  • I. M. Setyoaji, M. Subehi, Susanty, A. R. Nugrahani. Pembuatan Natrium Alginat Dari Alga Coklat (Phaeophyta) Dan Pengaruh Penambahannya Pada Sifat Antibakterial Sabun Minyak Dedak Padi (Rice Bran Oil). Jurnal Rekayasa dan Manajemen Agroindustri. 7, 370–379 (2019) [CrossRef] [Google Scholar]
  • Erniati, F.R. Zakaria, E. Prangdimurti, D.R. Adawiyah. Potensi rumput laut: kajian komponen bioaktif dan pemanfaatannya sebagai pangan fungsional. Acta Aquatica. 3, 12–17 (2016) [CrossRef] [Google Scholar]
  • M. Gazali, Nurjanah, P. Zamani, Neviaty. Eksplorasi senyawa bioaktif alga cokelat sargassum sp. Agardh sebagai antioksidan dari pesisir barat aceh. JPHPI. 21 (2018) [Google Scholar]
  • S. Agus. Antioxidant Activities of Species Seaweed from Sumba Island. Jurnal Sains dan Teknologi Indonesia. 9, 34–38 (2007) [Google Scholar]
  • P. J. L. Geraldino, L. M. Liao, and S. M. Boo. Morphological Study of the Marine Algal Genus Padina (Dictyotales, Phaeophyceae). Southern Philippines: 3 Species New to Philippines. Algae. 20, 99–112 (2005) [Google Scholar]
  • D. D. Hong, H. M. Hien, P. N. Son. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol. 19, 817–826 (2007). https://doi.org/10.1007/s10811-007-9228-x [CrossRef] [Google Scholar]
  • C. S. Pakidi, S. S. Hidayat. Potensi dan pemanfaatan bahan aktif alga coklat sargassum sp. Octopus Jurnal Perikanan. 5, 488–498 (2016) [Google Scholar]
  • S. Musa, G. Sanger, H. A. Dien. Komposisi kimia, senyawa bioaktif dan angka lempeng total pada rumput laut Gracilaria edulis. Media Teknologi Hasil Perikanan. 5, 184–189 (2017) [Google Scholar]
  • E. Yudiati, A. Ridho, A. A. Nugroho, S. Sedjati, L. Maslukah. Analisis kandungan agar, pigmen dan proksimat rumput laut Gracilaria sp. pada reservior dan biofilter tambak udang litopenaeus vannamei. Buletin Oseanografi Marina. 9, 133–140 (2020) [CrossRef] [Google Scholar]
  • (AOAC) Association of Official Anlytical Chemis. Official Methods of Analytical of Chemist. Arlington: The Associantion of Official Analytical Chemist, Inc. (2005) [Google Scholar]
  • M. S. Cardoso, O.R. Pereira, A.M.L. Seca, D.C.G.A. Pinto, A. M. S. Silva. Seaweeds as preventive agents for cardiovascular diseases: from nutrients to functional foods. Marine Drugs. (13), 6838–6865 (2015) [CrossRef] [PubMed] [Google Scholar]
  • K. Vijay et al. Proximate and mineral composition of brown seaweed from Gulf of Mannar. International Journal of Fisheries and Aquatic Studies. 5, 106–112 (2017) [Google Scholar]
  • T. Handayani, Sutarno, D. W. Ahmad. Analisis Komposisi Nutrisi Rumput Laut Sargassum crassifolium. Jurnal Biofarmasi. 2, 45–52 (2004) [Google Scholar]
  • A. Lopez-Santamarina, J. M. Miranda, A. C. Mondragon, A. Lamas, A. Cardelle-Cobas, C. M. Franco, et al. Potential use of marine seaweeds as prebiotics: a review. Molecules. 25, 1004 (2020) doi: 10.3390/molecules25041004 [CrossRef] [PubMed] [Google Scholar]
  • H. M. Mwalugha, J.G. Wakibia, G. M. Kenji, M. A. Mwasaru. Chemical composition of common seaweeds from the Kenya coast. J. Food Res. 4, 28–38 (2015) doi: 10.5539/jfr.v4n6p28 [CrossRef] [Google Scholar]
  • Santoso et al. 2013. Chemical Composition And Antioxidant Activity Of Tropical Brown Algae Padina Australis From Pramuka Island, District Of Seribu Island, Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis. 5, 287–297 (2013) [CrossRef] [Google Scholar]
  • G. Subramanian, A. Nagaraj, P. Gunavathi, S. Jamuna, V. Banumathi, V. Jayanthi, et al. Biochemical Composition of Padina pavonica (L.) a Brown Alga from Mandapam Coastal Regions; Southeast Coast of India. International Journal of Advanced Research, 2, 21–24 (2015) [Google Scholar]
  • K. H. Wong, and C.K. Cheung. Nutritional evaluation of some subtropical red and green seaweeds. Part I – proximate composition, amino acid profiles and some physicochemical properties. Food Chemistry. 71, 475–482 (2000) [CrossRef] [Google Scholar]
  • D. I. Sánchez-Machado, J. López-Cervantes, J. López-Hernández, and P. PasieroLosada. Fatty acid, total lipid, protein and ash contents of processed edible seaweeds. Food Chemistry. 85, 439–444 (2004) [CrossRef] [Google Scholar]
  • C. Denis, M. Morancais, M. Li, E. Deniaud, P. Gaudin, G. Wielgosz-Collin, G. Barnathan, P. Jaouen, and J. Fluerence. Study of the chemical composition of edible red macroalga Grateloupia turuturu from Brittany (France). Food Chemistry. 119, 913–917 (2010) [CrossRef] [Google Scholar]
  • Kasimala et al. Proximate composition of three abundant species of seaweeds from red sea coast in Massawa, Eritrea. J. Algal Biomass Utln. 8, 44–49 (2017) [Google Scholar]
  • V. Venugopal. Marine polysaccharides: Food applications. Boca Ratón, FL: CRC Press (2011). [Google Scholar]
  • P. Rupérez, F. Saura-Calixto. Dietary fibre and physicochemical properties of edible Rspanish seaweed. Eur. Food Res. Technol. 212, 349–354 (2001) [CrossRef] [Google Scholar]
  • Fennema OR. Priciples of Food Sciences. Marcel Dekker, lnc. New York. pp 792 (1976) [Google Scholar]
  • S. Lordan, R.P. Ross, C. Stanton. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs. 9, 1056–1100 (2011). [CrossRef] [PubMed] [Google Scholar]
  • C. Sudarmadji. Analisa bahan makanan dan pertanian. (Penerbit Liberty, Yogyakarta. 1989) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.