Open Access
Issue |
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 13 | |
Section | Functional Food, Nutrigenomics and Nutrigenetic | |
DOI | https://doi.org/10.1051/bioconf/202412703003 | |
Published online | 13 September 2024 |
- J, Walker, D. Halliday, R. Resnick, Fundamentals of physics 10th ed., (John Wiley & Sons Inc., USA, 2014) [Google Scholar]
- D.C. Giancoli, Physics principles with applications 7th ed., (Pearson, USA, 2016) [Google Scholar]
- A. Balmori, Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology. 16(2–3), 191–199 (2009). https://doi.org/10.1016/j.pathophys.2009.01.007 [CrossRef] [Google Scholar]
- M. Racuciu, S. Miclaus, D. Creanga, On the thermal effect induced in tissue samples exposed to extremely low-frequency electromagnetic field. Journal of Environmental Health Science and Engineering. 13(85), 1–12 (2015). https://doi.org/10.1186/s40201-015-0241-8 [CrossRef] [Google Scholar]
- P. Wust, B. Kortüm, U. Strauss, J. Nadobny, S. Zschaeck, M. Beck, U. Stein, P. Ghadjar, Non-thermal effects of radiofrequency electromagnetic fields. Scientific Reports. 10, 13488 (2020). https://doi.org/10.1038/s41598-020-69561-3 [CrossRef] [PubMed] [Google Scholar]
- B.B. Levitt, H.C. Lai, A.M. Manville II, Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Frontiers in Public Health. 10, 111 (2022). https://doi.org/10.3389/fpubh.2022.1000840 [CrossRef] [Google Scholar]
- H. Wang, X. Zhang, Magnetic fields and reactive oxygen species. International Journalof Molecular Sciences. 18, 2175 (2017). https://doi.org/10.3390/ijms18102175 [CrossRef] [Google Scholar]
- E.P. Solomon, C.E. Martin, D.W. Martin, L.R. Berg, Biology 11th ed., (Cengage Learning Inc., USA, 2019) [Google Scholar]
- D.L. Nelson, M.M. Cox, Lehninger principles of biochemistry 8th ed. (Macmillan Learning, USA, 2022) [Google Scholar]
- US Department of Agriculture, Green Kiwifruit. USDA National Nutrient Database for Standard Reference. http://www.ars.usda.gov/ba/bhnrc/ndl [Google Scholar]
- US Department of Agriculture, Dragon fruit. USDA National Nutrient Database for Standard Reference. http://www.ars.usda.gov/ba/bhnrc/ndl [Google Scholar]
- Z. Mirzoyan, M. Sollazzo, M. Allocca, A.M. Valenza, D. Grifoni, P. Bellosta, Drosophila melanogaster: A model organism to study cancer. Frontiers in Genetics. 10(51), 1–16 (2019). https://doi.org/10.3389/fgene.2019.00051 [CrossRef] [PubMed] [Google Scholar]
- B. Ugur, K. Chen, H.J. Bellen, Drosophila tools and assays for the study of human diseases. DMM Disease Models and Mechanisms. 9(3), 235–244 (2016). https://doi.org/10.1242/dmm.023762 [Google Scholar]
- K.L. Hari, A. Santerre, J.J. Sekelsky, K.S. Mckim, J.B. Boyd, R.S. Hawley, The mei.41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell. 82(5), 815–821 (1995). https://doi.org/10.1016/0092-8674(95)90478-6 [CrossRef] [PubMed] [Google Scholar]
- I. Sudaryadi, A.N. Rahmawati, M. Rizqiyah, Effect of handphone emf radiation on survival rate and morphological reproductive organ changes of fruit fly (Drosophila melanogaster Meigen, 1830), in AIP Conference Proceedings. 2260 (2020). https://doi.org/10.1063/5.0015846 [Google Scholar]
- P.D. Zamore, S. Ma, Isolation of Drosophila melanogaster testes. Journal of Visualized Experiments. 51, 2641 (2011) [Google Scholar]
- E. Rauschert, Survivorship Curves, Nature Education Knowledge. 3(10), 18 (2010) [Google Scholar]
- G. Fedele, E.W. Green, E. Rosato, C.P. Kyriacou, An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications. 5, 4391 (2014). https://doi.org/10.1038/ncomms5391 [CrossRef] [PubMed] [Google Scholar]
- U. Cappucci, A.M. Casale, M. Proietti, F. Marinelli, L. Giuliani, L. Piacentini, WiFi related radiofrequency electromagnetic fields promote transposable elementdysregulation and genomic instability in Drosophila melanogaster. Cells, 11, 4036 (2022). https://doi.org/10.3390/cells11244036 [CrossRef] [PubMed] [Google Scholar]
- Z.Y. Zhang, J. Zhang, C.J. Yang, H.Y. Lian, H. Yu, X.M. Huang, P. Cai, Coupling mechanism of electromagnetic field and thermal stress on Drosophila melanogaster. PLOS ONE. 11(9), e0162675 (2016). https://doi.org/10.1371/journal.pone.0162675 [CrossRef] [PubMed] [Google Scholar]
- E. Kivrak, K. Yurt, A. Kaplan, I. Alkan, G. Altun, Effects of electromagnetic fields exposure on the antioxidant defense system. Journal of Microscopy and Ultrastructure. 5(4), 167 (2017). https://doi.org/10.1016/j.jmau.2017.07.003 [CrossRef] [PubMed] [Google Scholar]
- A. Podsȩdek, I. Majewska, M. Redzynia, D. Sosnowska, M. Koziołkiewicz, In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. Journal of Agricultural and Food Chemistry. 62(20), 4610–4617 (2014). https://doi.org/10.1021/jf5008264 [CrossRef] [PubMed] [Google Scholar]
- S. Li, Z.Y. Zhang, C.J. Yang, H.Y. Lian, P. Cai. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutation Research Genetic Toxicology and Environmental Mutagenesis. 758(1–2), 95–103 (2013). https://doi.org/10.1016/j.mrgentox.2013.10.004 [CrossRef] [PubMed] [Google Scholar]
- E. Atli, H. Ünlü. The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster. International Journal of Radiation Biology. 82(6), 435–441 (2006). https://doi.org/10.1080/09553000600798849 [CrossRef] [PubMed] [Google Scholar]
- D.J. Panagopoulos. Effect of microwave exposure on the ovarian development of Drosophila melanogaster. Cell biochemistry and biophysics. 63(2), 121–132 (2012). https://doi.org/10.1007/s12013-012-9347-0 [CrossRef] [PubMed] [Google Scholar]
- D.A. Green, C.G. Extavour, Insulin signalling underlies both plasticity and divergence of a reproductive trait in Drosophila, in Proceedings of the Royal Society B: Biological Sciences. 281, 1779 (2014). https://doi.org/10.1098/rspb.2013.2673 [Google Scholar]
- S.W.S. Tan, Q.Y. Lee, B.S.E. Wong, Y. Cai, G.H. Baeg, Redox homeostasis plays important roles in the maintenance of the Drosophila testis germline stem cells. Stem Cell Reports. 9(1), 342–354 (2017). https://doi.org/10.1016/j.stemcr.2017.05.034 [CrossRef] [PubMed] [Google Scholar]
- A. Fauzi, S.D. Ramadani, I. Sukmawati, The consistency of sex ratio of Drosophila melanogaster (Meigen) in different physical environment condition, in Proceeding of International Conference on Green Technology. 8(1), 176–179 (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.