Open Access
Issue |
BIO Web Conf.
Volume 130, 2024
International Scientific Conference on Biotechnology and Food Technology (BFT-2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 21 | |
Section | Plant Biotechnology | |
DOI | https://doi.org/10.1051/bioconf/202413001001 | |
Published online | 09 October 2024 |
- M. Sharifi-Rad, N.V. Anil Kumar, P. Zucca, E.M. Varoni, L. Dini, E. Panzarini, … & J. Sharifi-Rad, Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, 11, 694 (2020). https://doi.org/10.3389/fphys.2020.00694 [CrossRef] [PubMed] [Google Scholar]
- C. Kremslehner, A. Miller, R. Nica, I.M. Nagelreiter, M.S. Narzt, B. Golabi, … & F. Gruber, Imaging of metabolic activity adaptations to UV stress, drugs and differentiation at cellular resolution in skin and skin equivalents–Implications for oxidative UV damage. Redox Biology, 37, 101583 (2020). https://doi.org/10.1016/j.redox.2020.101583 [CrossRef] [PubMed] [Google Scholar]
- M. Abdolmaleki, M. Mehrpooya, B. Sifizarei, M. Saidijam, A.R. Soltanian, M. Ganji & A. Ranjbar, Oxidative Toxic Stress and DNA Damage as a Promising Strategy for Identifying Patients with Nonalcoholic Fatty Liver Disease. Jordan Journal of Biological Sciences, 14(4) (2021). https://doi.org/10.54319/jjbs/140409 [Google Scholar]
- D.D. Siskawadani, S. Winarsih & K. Khawwee, The antioxidant activity of kelor (Moriga oleifera lam) leaves based on drying methods. Jordan Journal of Biological Sciences, 14(2), 291-295 (2021). https://doi.org/10.54319/jjbs/140214 [Google Scholar]
- H. Labiad, A. Et-tahir, M. Ghanmi, B. Satrani, A. Aljaiyash, A. Chaouch & M. Fadli, Ethnopharmacological survey of aromatic and medicinal plants of the pharmacopoeia of northern Morocco. Ethnobotany Research and Applications, 19, 1-16 (2020). http://dx.doi.org/10.32859/era.19.45.1-16 [CrossRef] [Google Scholar]
- T. Al-Shboul, I.M. Najadat, E.I. Hussein & W.M. Al Khateeb, Phytochemical Analysis and Biological Activity of Micromeria fruticosa (L.) Collected from Northern Jordan. Jordan Journal of Biological Sciences, 15(5), 833–839 (2022). https://doi.org/10.54319/jjbs/150512 [Google Scholar]
- M.R. Kamli, A.A.M. Sharaf, J.S. Sabir & I.A. Rather, Phytochemical screening of Rosmarinus officinalis L. as a potential anticholinesterase and antioxidant–medicinal plant for cognitive decline disorders. Plants, 11(4), 514 (2022). https://doi.org/10.3390/plants11040514 [CrossRef] [PubMed] [Google Scholar]
- M. Loussouarn, A. Krieger-Liszkay, L. Svilar, A. Bily, S. Birtić & M. Havaux, Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant physiology, 175(3), 1381-1394 (2017). https://doi.org/10.1104/pp.17.01183 [CrossRef] [PubMed] [Google Scholar]
- T. Karataş, F. Korkmaz, A. Karataş & S. Yildirim, Effects of Rosemary (Rosmarinus officinalis) extract on growth, blood biochemistry, immunity, antioxidant, digestive enzymes and liver histopathology of rainbow trout, Oncorhynchus mykiss. Aquaculture nutrition, 26(5), 1533-1541 (2020). https://doi.org/10.1111/anu.13100 [CrossRef] [Google Scholar]
- S. N. Senanayake, Rosemary extract as a natural source of bioactive compounds. Journal of Food Bioactives, 2, 51-57 (2018). https://doi.org/10.31665/JFB.2018.2140 [CrossRef] [Google Scholar]
- A. Anadón, I. Ares, M.R. Martínez-Larrañaga & M.A. Martínez, Interactions between nutraceuticals/nutrients and nutrients and therapeutic drugs. In Nutraceuticals. Academic Press., 1175-1197 (2021). https://doi.org/10.1016/B978-0-12-8210383.00070-7 [CrossRef] [Google Scholar]
- M.G. Rahbardar & H. Hosseinzadeh, Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iranian journal of basic medical sciences, 23(9), 1100 (2020). https://doi.org/10.22038/ijbms.2020.45269.10541 [PubMed] [Google Scholar]
- S.M. Ezzat, M.H. El Bishbishy, D. M. El Kersh, A. Zayed, M. A. Salem & M.M. Salama, Herbal cosmeticology. In Preparation of Phytopharmaceuticals for the Management of Disorders. Academic Press, 129-168 (2021). https://doi.org/10.1016/B978-0-12-820284-5.00022-8 [CrossRef] [Google Scholar]
- N. Ngamkhae, O. Monthakantirat, Y. Chulikhit, C. Boonyarat, J. Maneenet, C. Khamphukdee, … & S. Daodee, Optimization of extraction method for Kleeb Bua Daeng formula and comparison between ultrasound-assisted and microwave-assisted extraction. Journal of Applied Research on Medicinal and Aromatic Plants, 28, 100369 (2022). https://doi.org/10.1016/j.jarmap.2022.100369 [CrossRef] [Google Scholar]
- A. Boutagayout, E. Bouiamrine, A. Adiba, M. Yahbi, L. Nassiri & S. Belmalha, Reduced Corum herbicide dose with allelopathic crop water extract for weed control in faba bean. Journal of Plant Protection Research, 219-232 (2023). https://doi.org/10.24425/jppr.2023.145756 [Google Scholar]
- A.M. Shraim, T. A. Ahmed, M.M. Rahman & Y.M. Hijji, Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Lwt, 150, 111932 (2021). https://doi.org/10.1016/j.lwt.2021.111932 [CrossRef] [Google Scholar]
- N. Benzeggouta, Evaluation des effets biologiques des extraits aqueux de plantes médicinales seules et combinées. Ph.D. Dissertation, Mentouri-Constantine University, Constantine, Algeria (2017). [Google Scholar]
- R. Amarowicz, R.B. Pegg, P. Rahimi-Moghaddam, B. Barl & J.A. Weil, Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food chemistry, 84(4), 551-562 (2004). https://doi.org/10.1016/S0308-8146(03)00278-4 [CrossRef] [Google Scholar]
- A. Labhar, O. Benamari, Y. El-Mernissi, A. Salhi, M. Ahari, S. El Barkany, & H. Amhamdi, Phytochemical, Anti-inflammatory and Antioxidant Activities of Pistacia Lentiscus L. Leaves from Ajdir, Al Hoceima Province, Morocco. Ecological Engineering & Environmental Technology, 24(7), 172-177 (2023). https://doi.org/10.12912/27197050/169935 [CrossRef] [Google Scholar]
- M. Ozgen, R.N. Reese, A.Z. Tulio, J.C. Scheerens & A.R. Miller, Modified 2, 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 ‘-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157 (2006). https://doi.org/10.1021/jf051960d [CrossRef] [PubMed] [Google Scholar]
- P. Prieto, M. Pineda & M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337341 (1999). https://doi.org/10.1006/abio.1999.4019 [CrossRef] [PubMed] [Google Scholar]
- V. Bonnaillie-Noël, M. Dauge, N. Popoff & N. Raymond, Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions. Zeitschrift für angewandte Mathematik und Physik, 63(2), 203-231 (2012). https://doi.org/10.1007/s00033-011-0163-y [CrossRef] [Google Scholar]
- M. Vinatoru, T. J. Mason & I. Calinescu, Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178 (2017). https://doi.org/10.1016/j.trac.2017.09.002 [CrossRef] [Google Scholar]
- S. Bhagwat, D.B. Haytowitz & J.M. Holden, USDA database for the flavonoid content of selected foods, Release 3.1. US Department of Agriculture: Beltsville, MD, USA (2014). [Google Scholar]
- F. Mani & C. Hannachi, Chemical composition, antioxidant and antibacterial activities of Pistacia lentiscus and Rosmarinus officinalis essentials oils. Journal of New Sciences, 69 (2020). [Google Scholar]
- A.K. Das, M.N. Islam, M.O. Faruk, M. Ashaduzzaman & R. Dungani, Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58-70 (2020). https://doi.org/10.1016/j.sajb.2020.08.008 [CrossRef] [Google Scholar]
- S. Selmi, K. Rtibi, D. Grami, H. Sebai & L. Marzouki, Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology, 24(4), 297-303 (2017). https://doi.org/10.1016/j.pathophys.2017.08.002 [CrossRef] [PubMed] [Google Scholar]
- D. Wenkert, W.H. McAlister, S.P. Coburn, J.A. Zerega, L.M. Ryan, K.L. Ericson, … & M.P. Whyte, Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). Journal of Bone and Mineral Research, 26(10), 2389-2398 (2011). https://doi.org/10.1002/jbmr.454 [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, J.P. Smuts, E. Dodbiba, R. Rangarajan, J.C. Lang & D.W. Armstrong, Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. Journal of agricultural and food chemistry, 60(36), 9305-9314 (2012). https://doi.org/10.1021/jf302179c [CrossRef] [PubMed] [Google Scholar]
- M.S. Afonso, A.M. de O Silva, E.B. Carvalho, D.P. Rivelli, S.B. Barros, M.M. Rogero, … & Mancini-Filho, J. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutrition & metabolism, 10, 1-9 (2013). https://doi.org/10.1186/1743-7075-10-19 [CrossRef] [PubMed] [Google Scholar]
- L. Pérez-Fons, M.T. GarzÓn & V. Micol, Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. Journal of agricultural and food chemistry, 58(1), 161-171 (2010). https://doi.org/10.1021/jf9026487 [CrossRef] [PubMed] [Google Scholar]
- P. Mena, M. Cirlini, M. Tassotti, K.A. Herrlinger, C. Dall’Asta, & D. Del Rio, Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules, 21(11), 1576 (2016). https://doi.org/10.3390/molecules21111576 [CrossRef] [PubMed] [Google Scholar]
- M.B. Hossain, D.K. Rai, N.P. Brunton, A.B. Martin-Diana & C. Barry-Ryan, Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. Journal of agricultural and food chemistry, 58(19), 10576-10581 (2010). https://doi.org/10.1021/jf102042g [CrossRef] [PubMed] [Google Scholar]
- J.O. Chaves, M.C. De Souza, L.C. Da Silva, D. Lachos-Perez, P.C. Torres-Mayanga, A.P.D.F., Machado, … & Rostagno, M. A. Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, 8, 507887 (2020). https://doi.org/10.3389/fchem.2020.507887 [CrossRef] [PubMed] [Google Scholar]
- N. Erkan, G. Ayranci & E. Ayranci, Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food chemistry, 110(1), 76-82 (2008). https://doi.org/10.1016/j.foodchem.2008.01.058 [CrossRef] [PubMed] [Google Scholar]
- G. Nieto, G. Ros & J. Castillo, Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis L.): A review. Medicines, 5(3), 98 (2018). https://doi.org/10.3390/medicines5030098 [CrossRef] [PubMed] [Google Scholar]
- L. Martínez, J. Castillo, G. Ros & G. Nieto, Antioxidant and antimicrobial activity of rosemary, pomegranate and olive extracts in fish patties. Antioxidants, 8(4), 86 (2019). https://doi.org/10.3390/antiox8040086 [CrossRef] [PubMed] [Google Scholar]
- M.N. Alam, N.J. Bristi & M. Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi pharmaceutical journal, 21(2), 143-152 (2013). https://doi.org/10.1016/j.jsps.2012.05.002 [CrossRef] [Google Scholar]
- M. Taboada-Alquerque, D. Pajaro-Valenzuela, K. Caballero-Gallardo, A. Cifuentes, E. Ibáñez, M. Ahumedo-Monterrosa, … & J. Olivero-Verbel, Mapping Protein Targets of Carnosol, a Molecule Identified in Rosmarinus officinalis: In Silico Docking Studies and Network Pharmacology. Scientia Pharmaceutica, 91(2), 19 (2023). https://doi.org/10.3390/scipharm91020019 [Google Scholar]
- H. Bouammali, L. Zraibi, I. Ziani, M. Merzouki, L. Bourassi, E. Fraj, … & R. Touzani, Rosemary as a Potential Source of Natural Antioxidants and Anticancer Agents: A Molecular Docking Study. Plants, 13(1), 89 (2023). https://doi.org/10.3390/plants13010089 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.