Open Access
Issue
BIO Web Conf.
Volume 131, 2024
6th International Conference on Tropical Resources and Sustainable Sciences (CTReSS 6.0)
Article Number 04017
Number of page(s) 12
Section Geosciences
DOI https://doi.org/10.1051/bioconf/202413104017
Published online 15 October 2024
  • L. Xiong, S. Li, G. Tang, and J. Strobl,. “Geomorphometry and terrain analysis: data, methods, platforms and applications,” Earth-Science Reviews 233, 104191,(2022). [CrossRef] [Google Scholar]
  • K. L. Meierdiercks, M. H. Finewood, and C. Bennett,. “Defining the term watershed to reflect modern uses and functions as inter- and intra-connected socio-hydrologic systems,” J Environ Stud Sci 14, 236–255, (2024). [CrossRef] [Google Scholar]
  • R. Sankriti, S. Subbarayan, M. Aluru, Abijith Devanantham, N. Reddy, and S. Ayyakkannu,. “Morphometric analysis and prioritization of sub- watersheds of Himayatsagar catchment, Ranga Reddy District, Telangana, India using remote sensing and GIS techniques,” Int J Syst Assur Eng Manag. (2021). [Google Scholar]
  • Md. S. Chowdhury,. “Morphometric analysis of Halda River basin, Bangladesh, using GIS and remote sensing techniques,” Heliyon 10, e29085, (2024). [CrossRef] [PubMed] [Google Scholar]
  • M. Sohail and S. Mahmood,. “Flood susceptibility modeling using geo- morphometric ranking approach in Jhelum River basin, Pakistan,” Natural Hazards Research 4, 187–193, (2024). [CrossRef] [Google Scholar]
  • V. Ratna Reddy, Y. S. Saharawat, and B. George,. “Watershed management in South Asia: A synoptic review,” Journal of Hydrology 551, 4–13, (2017). [CrossRef] [Google Scholar]
  • G. D. Bathrellos, E. Karymbalis, H. D. Skilodimou, K. Gaki-Papanastassiou, and E. A. Baltas,. “Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece,” Environ Earth Sci 75, 319, (2016). [CrossRef] [Google Scholar]
  • A. Islam and S. Ghosh,. “Economic transformation in the wake of flood: a case of the lower stretch of the Mayurakshi River Basin, India,” Environ Dev Sustain 23, 15550–15590, (2021). [CrossRef] [Google Scholar]
  • D. Tien Bui, N.-D. Hoang, F. Martínez-Álvarez, P.-T. T. Ngo, P. V. Hoa, T. D. Pham, P. Samui, and R. Costache,. “A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area,” Science of The Total Environment 701, 134413, (2020). [CrossRef] [Google Scholar]
  • A. Jodar-Abellan, J. Valdes-Abellan, C. Pla, and F. Gomariz-Castillo,. “Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain),” Science of The Total Environment 657, 1578–1591, (2019). [CrossRef] [Google Scholar]
  • A. Javed, M. Y. Khanday, and R. Ahmed,. “Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques,” J Indian Soc Remote Sens 37, 261–274, (2009). [CrossRef] [Google Scholar]
  • K. Nooka Ratnam, Y. K. Srivastava, V. Venkateswara Rao, E. Amminedu, and K. S. R. Murthy,. “Check dam positioning by prioritization of micro- watersheds using SYI model and morphometric analysis — Remote sensing and GIS perspective,” J Indian Soc Remote Sens 33, 25–38, (2005). [CrossRef] [Google Scholar]
  • S. Ahmed, S. Khurshid, R. Ahmad, W. Sultan, M. M. A. Khan, H. E. Mansor, E. James, and M. K. N. Shamsuddin,. “Land use/land cover change analysis using geospatial technology in Mathura district, Uttar Pradesh, India,” In AIP Conference Proceedings, 2454, (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.