Open Access
Issue
BIO Web Conf.
Volume 132, 2024
12th UGM Public Health Symposium “One Health Approach: Addressing Challenges in Antimicrobial Resistance”
Article Number 05002
Number of page(s) 16
Section Health Promotion in Specific Settings
DOI https://doi.org/10.1051/bioconf/202413205002
Published online 17 October 2024
  • Institute for Health Metrics and Evaluation (IHME), Findings from the Global Burden of Disease Study 2019. (Seattle, WA: IHME, 2020) [Google Scholar]
  • Wies B., Landers C. and Ienca M., Digital Mental Health for Young People: A Scoping Review of Ethical Promises and Challenges. Front. Digit. Health 3:697072 (2021). https://doi.org/10.3389/fdgth.2021.697072 [CrossRef] [Google Scholar]
  • Rollwage, M., Habicht, J., Juechems, K., Carrington, B., Stylianou, M., Hauser, T.U. and Harper, R., Using Conversational AI to Facilitate Mental Health Assessments and Improve Clinical Efficiency Within Psychotherapy Services: Real-World Observational Study. JMIR AI, 2(1), p.e44358 (2023). https://doi.org/10.2196/44358 [CrossRef] [Google Scholar]
  • Park, D.Y.; Kim, H., Determinants of Intentions to Use Digital Mental Healthcare Content among University Students, Faculty, and Staff: Motivation, Perceived Usefulness, Perceived Ease of Use, and Parasocial Interaction with AI Chatbot. Sustainability 2023, 15, 872 (2023). https://doi.org/10.3390/su15010872 [Google Scholar]
  • Haque MDR, Rubya S., An Overview of Chatbot-Based Mobile Mental Health Apps: Insights From App Description and User Reviews. JMIR Mhealth Uhealth.;11:e44838. PMID: 37213181; PMCID: PMC10242473 (2023). https://doi.org/10.2196/44838 [CrossRef] [Google Scholar]
  • Sweeney, Colm & Potts, Courtney & Ennis, Edel & Bond, Raymond & Mulvenna, Maurice & O ' Neill, Siobhan & Malcolm, Martin & Kuosmanen, Lauri & Kostenius, Catrine & Vakaloudis, Alex & Mcconvey, Gavin & Turkington, Robin & Hanna, David & Nieminen, Heidi & Vartiainen, Anna-Kaisa & Robertson, Alison & Mctear, Michael, Can Chatbots Help Support a Person’s Mental Health? Perceptions and Views from Mental Healthcare Professionals and Experts. ACM Transactions on Computing for Healthcare. 2. 1–15 (2021). https://doi.org/10.1145/3453175 [CrossRef] [Google Scholar]
  • Díaz-García A., González-Robles A., Mor S., Mira A., Quero S., García-Palacios A., Baños R.M., Botella C., Positive and Negative Affect Schedule (PANAS): psychometric properties of the online Spanish version in a clinical sample with emotional disorders. BMC Psychiatry. PMID: 32039720; PMCID: PMC7008531 (2020). https://doi.org/10.1186/s12888-020-2472-1 [Google Scholar]
  • Dosovitsky G., Kim E. and Bunge E.L., Psychometric Properties of a Chatbot Version of the PHQ-9 With Adults and Older Adults. Front. Digit. Health 3:645805 (2021). https://doi.org/10.3389/fdgth.2021.645805 [CrossRef] [Google Scholar]
  • Denecke K., Framework for Guiding the Development of High-Quality Conversational Agents in Healthcare. Healthcare (Basel). Apr 7;11(8):1061. PMID: 37107895; PMCID: PMC10137907 (2023). https://doi.org/10.3390/healthcare11081061 [CrossRef] [Google Scholar]
  • Diengdoh I., Ali A. (2022). Body Image and Its Association with Depression, Anxiety, and Self-esteem among College going Students: A Study from Northeast India. Indian J Community Med. Epub 2022 Jul 11. PMID: 36034238; PMCID: PMC9400361 (2022). https://doi.org/10.4103/ijcm.ijcm_881_21 [Google Scholar]
  • Rodgers R.F., Laveway K., Campos P., de Carvalho PHB, Body image as a global mental health concern. Glob Ment Health (Camb). PMID: 36861019; PMCID: PMC9970735 (2023). https://doi.org/10.1017/gmh.2023.2 [Google Scholar]
  • Abd-Alrazaq A., Safi Z., Alajlani M., Warren J., Househ M., Denecke K., Technical Metrics Used to Evaluate Health Care Chatbots: Scoping Review. J Med Internet Res. Jun 5;22(6):e18301. PMID: 32442157; PMCID: PMC7305563 (2020). https://doi.org/10.2196/18301 [CrossRef] [Google Scholar]
  • Zabo V., Purebl G., Olah A., Gonda X., Harangozo J., Keri S., Vincze A., Patko D., Bognar J., Erat D., Vargha A., Mental Health Profiles in Clinical and Non-clinical Samples in Light of the Maintainable Positive Mental Health Theory: Protocol Paper. Neuropsychopharmacol Hung. PMID: 36776110 (2022). [Google Scholar]
  • Hyzy M., Bond R., Mulvenna M., Bai L., Dix A., Leigh S., Hunt S., System Usability Scale Benchmarking for Digital Health Apps: Meta-analysis. JMIR Mhealth Uhealth. PMID: 35980732; PMCID: PMC9437782 (2022). https://doi.org/10.2196/37290 [Google Scholar]
  • Szcześniak M., Falewicz A., Strochalska K., Rybarski R., Anxiety and Depression in a Non-Clinical Sample of Young Polish Adults: Presence of Meaning in Life as a Mediator. International Journal of Environmental Research and Public Health. (2022). https://doi.org/10.3390/ijerph19106065 [Google Scholar]
  • Tricco A.C., Lillie E., Zarin W., O'Brien K.K., Colquhoun H., Levac D., Moher D., Peters MDJ, Horsley T., Weeks L., Hempel S., Akl E.A., Chang C., McGowan J., Stewart L., Hartling L., Aldcroft A., Wilson M.G., Garritty C., Lewin S., Godfrey C.M., Macdonald M.T., Langlois E.V., Soares-Weiser K., Moriarty J., Clifford T., Tunçalp Ö., Straus S.E., PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. Epub 2018 Sep 4. PMID: 30178033 (2018). https://doi.org/10.7326/M18-0850 [Google Scholar]
  • Schillings, C., Meissner, D., Erb, B., Schultchen, D., Bendig, E., & Pollatos, O., A chatbot-based intervention with ELME to improve stress and health-related parameters in a stressed sample: Study protocol of a randomised controlled trial. Frontiers in Digital Health, 5(March), 1–14 (2023). https://doi.org/10.3389/fdgth.2023.1046202 [CrossRef] [Google Scholar]
  • Wrightson-Hester, A. R., Anderson, G., Dunstan, J., McEvoy, P. M., Sutton, C. J., Myers, B., Egan, S., Tai, S., Johnston-Hollitt, M., Chen, W., Gedeon, T., & Mansell, W., An Artificial Therapist (Manage Your Life Online) to Support the Mental Health of Youth: Co-Design and Case Series. JMIR Human Factors, 10, 1–22 (2023). https://doi.org/10.2196/46849 [Google Scholar]
  • Matheson, E. L., Smith, H. G., Amaral, A. C. S., Meireles, J. F. F., Almeida, M. C., Mora, G., Leon, C., Gertner, G., Ferrario, N., Suarez Battan, L., Linardon, J., Fuller-Tyszkiewicz, M., & Diedrichs, P.C., Improving body image at scale among Brazilian adolescents: study protocol for the co-creation and randomised trial evaluation of a chatbot intervention. BMC Public Health, 21(1), 1–14 (2021). https://doi.org/10.1186/s12889-021-12129-1 [CrossRef] [PubMed] [Google Scholar]
  • Jang, S., Kim, J. J., Kim, S. J., Hong, J., Kim, S., & Kim, E., Mobile app-based chatbot to deliver cognitive behavioral therapy and psychoeducation for adults with attention deficit: A development and feasibility/usability study. International Journal of Medical Informatics, 150 (January), 104440 (2021). https://doi.org/10.1016/j.ijmedinf.2021.104440 [CrossRef] [PubMed] [Google Scholar]
  • He, Y., Yang, L., Zhu, X., Wu, B., Zhang, S., Qian, C., & Tian, T., Mental Health Chatbot for Young Adults With Depressive Symptoms During the COVID-19 Pandemic: Single-Blind, Three-Arm Randomized Controlled Trial. Journal of Medical Internet Research, 24(11), 1–20 (2022). https://doi.org/10.2196/40719 [Google Scholar]
  • Gabrielli, S., Rizzi, S., Bassi, G., Carbone, S., Maimone, R., Marchesoni, M., & Forti, S., Engagement and effectiveness of a healthy-coping intervention via chatbot for university students during the COVID-19 pandemic: Mixed methods proof-of-concept study. JMIR MHealth and UHealth, 9(5), 1–14 (2021). https://doi.org/10.2196/27965 [Google Scholar]
  • Anmella, G., Sanabra, M., Primé-Tous, M., Segú, X., Cavero, M., Morilla, I., Grande, I., Ruiz, V., Mas, A., Martín-Villalba, I., Caballo, A., Julia-Parisad, E., Rodríguez-Rey, A., Piazza, F., José Valdesoiro, F., Rodriguez-Torrella, C., Espinosa, M., Virgili, G., Sorroche, C., Hidalgo-Mazzei, D., Vickybot, a Chatbot for Anxiety-Depressive Symptoms and Work-Related Burnout in Primary Care and Health Care Professionals: Development, Feasibility, and Potential Effectiveness Studies. Journal of Medical Internet Research (2023). https://doi.org/10.2196/43293 [Google Scholar]
  • Viduani, A., Cosenza, V., Fisher, H. L., Buchweitz, C., Piccin, J., Pereira, R., Kohrt, B. A., Mondelli, V., van Heerden, A., Araújo, R. M., & Kieling, C., Assessing Mood With the Identifying Depression Early in Adolescence Chatbot (IDEABot): Development and Implementation Study. JMIR Human Factors, 10, 1–13 (2023). https://doi.org/10.2196/44388 [Google Scholar]
  • Prochaska, J. J., Vogel, E. A., Chieng, A., Kendra, M., Baiocchi, M., Pajarito, S., & Robinson, A., A therapeutic relational agent for reducing problematic substance use (Woebot): Development and usability study. Journal of Medical Internet Research, 23(3), 1–17 (2021). https://doi.org/10.2196/24850 [Google Scholar]
  • Bendig, E., Erb, B., Meißner, D., Bauereiß, N., & Baumeister, H., Feasibility of a Software agent providing a brief Intervention for Self-help to Uplift psychological wellbeing (“SISU”). A single-group pretest-posttest trial investigating the potential of SISU to act as therapeutic agent. Internet Interventions (2021). https://doi.org/10.1016/j.invent.2021.100377 [Google Scholar]
  • Chiauzzi, E., Robinson, A., Martin, K., Petersen, C., Wells, N., Williams, A., & Gleason, M.M., A Relational Agent Intervention for Adolescents Seeking Mental Health Treatment: Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 12, 1–11 (2023). https://doi.org/10.2196/44940 [Google Scholar]
  • Goonesekera, Y., & Donkin, L., A Cognitive Behavioral Therapy Chatbot (Otis) for Health Anxiety Management: Mixed Methods Pilot Study. JMIR Formative Research, 6(10) (2022). https://doi.org/10.2196/37877 [Google Scholar]
  • Potts, C., Lindström, F., Bond, R., Mulvenna, M., Booth, F., Ennis, E., Parding, K., Kostenius, C., Broderick, T., Boyd, K., Vartiainen, A. K., Nieminen, H., Burns, C., Bickerdike, A., Kuosmanen, L., Dhanapala, I., Vakaloudis, A., Cahill, B., MacInnes, M. O’Neill, S., A Multilingual Digital Mental Health and Well-Being Chatbot (ChatPal): Pre-Post Multicenter Intervention Study. Journal of Medical Internet Research, 25 (2023). https://doi.org/10.2196/43051 [Google Scholar]
  • Williams, R., Hopkins, S., Frampton, C., Holt-Quick, C., Merry, S. N., & Stasiak, K., 21-day stress detox: Open trial of a universal well-being chatbot for young adults. Social Sciences, 10(11), 1–18 (2021). https://doi.org/10.3390/socsci10110416 [CrossRef] [Google Scholar]
  • Skjuve, M., Følstad, A., Fostervold, K. I., & Brandtzaeg, P.B., My Chatbot Companion - a Study of Human-Chatbot Relationships. International Journal of Human Computer Studies, 149 (January) (2021). https://doi.org/10.1016/j.ijhcs.2021.102601 [CrossRef] [Google Scholar]
  • Zhu, Y., Janssen, M., Wang, R., & Liu, Y., It Is Me, Chatbot: Working to Address the COVID-19 Outbreak-Related Mental Health Issues in China. User Experience, Satisfaction, and Influencing Factors. International Journal of Human-Computer Interaction, 38(12), 1182–1194 (2022). https://doi.org/10.1080/10447318.2021.1988236 [CrossRef] [Google Scholar]
  • Cameron, G., Cameron, D., Megaw, G., Bond, R., Mulvenna, M., O’Neill, S., Armour, C., & McTear, M., Assessing the usability of a chatbot for mental health care. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11551 LNCS, 121–132 (2019). https://doi.org/10.1007/978-3-030-17705-8_11 [Google Scholar]
  • Shah, J., DePietro, B., D’Adamo, L., Firebaugh, M. L., Laing, O., Fowler, L. A., Smolar, L., Sadeh-Sharvit, S., Taylor, C. B., Wilfley, D. E., & Fitzsimmons-Craft, E. E., Development and usability testing of a chatbot to promote mental health services use among individuals with eating disorders following screening. International Journal of Eating Disorders, 55(9), 1229–1244 (2022). https://doi.org/10.1002/eat.23798 [CrossRef] [PubMed] [Google Scholar]
  • Daley, K., Hungerbuehler, I., Cavanagh, K., Claro, H. G., Swinton, P. A., & Kapps, M., Preliminary Evaluation of the Engagement and Effectiveness of a Mental Health Chatbot. Frontiers in Digital Health, 2(November), 1–7 (2020). https://doi.org/10.3389/fdgth.2020.576361 [CrossRef] [PubMed] [Google Scholar]
  • Sabour, S., Zhang, W., Xiao, X., Zhang, Y., Zheng, Y., Wen, J., Zhao, J., & Huang, M., A chatbot for mental health support: exploring the impact of Emohaa on reducing mental distress in China. Frontiers in Digital Health, 5(May), 1–13 (2023). https://doi.org/10.3389/fdgth.2023.1133987 [CrossRef] [Google Scholar]
  • Romanovskyi, O., Pidbutska, N., & Knysh, A., Elomia chatbot: The effectiveness of artificial intelligence in the fight for mental health. CEUR Workshop Proceedings, 2870, 1215–1224 (2021). [Google Scholar]
  • Donelle L., Comer L., Hiebert B., Hall J., Shelley J.J., Smith M.J., Kothari A., Burkell J., Stranges S., Cooke T., Shelley J.M., Gilliland J., Ngole M., Facca D., Use of digital technologies for public health surveillance during the COVID-19 pandemic: A scoping review. Digit Health. PMID: 37214658; PMCID: PMC10196539 (2023). https://doi.org/10.1177/20552076231173220 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.