Open Access
Issue |
BIO Web Conf.
Volume 135, 2024
4th International Conference on Pharmaceutical Updates (ICPU 2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 9 | |
Section | Active Ingredients Discovery | |
DOI | https://doi.org/10.1051/bioconf/202413501001 | |
Published online | 07 November 2024 |
- H. Purnobasuki, “Potensi Mangrove Sebagai Tanaman Obat (Short Communication),” Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, no. 1998, 2019, doi: 10.24002/biota.v9i2.2901. [Google Scholar]
- A. Saranya, T. Ramanathan, K. S. Kesavanarayanan, and A. Adam, “Traditional Medicinal Uses , Chemical Constituents and Biological Activities of a Mangrove Plant , Acanthus ilicifolius Linn . : A Brief Review Pharmacology and Toxicology Research Laboratory , Faculty of Pharmacy,” AmericanEurasian J. Agric. & Environ. Sci., vol. 15, no. 2, pp. 243–250, 2015, doi: 10.5829/idosi.aejaes.2015.15.2.12529. [Google Scholar]
- P. K. Sardar et al., “Antiallergic, anthelmintic and cytotoxic potentials of dried aerial parts of Acanthus ilicifolius L.,” Clinical Phytoscience, vol. 4, no. 1, p. 34, 2018, doi: 10.1186/s40816-018-0094-7. [CrossRef] [Google Scholar]
- S. Ganesh and J. J. Vennila, “Phytochemical analysis of Acanthus ilicifolius and Avicennia officinalis by GC-MS,” Research Journal of Phytochemistry, vol. 5, no. 1, pp. 60–65, 2011. [CrossRef] [Google Scholar]
- W.-C. Chi, K.-L. Pang, W.-L. Chen, G.-J. Wang, and T.-H. Lee, “Antimicrobial and iNOS inhibitory activities of the endophytic fungi isolated from the mangrove plant Acanthus ilicifolius var. xiamenensis,” Botanical Studies, vol. 60, no. 1, p. 4, 2019, doi: 10.1186/s40529-019-0252-3. [CrossRef] [PubMed] [Google Scholar]
- D. Singh and V. Aeri, “Phytochemical and pharmacological potential of Acanthus ilicifolius,” J Pharm Bioallied Sci., vol. 5, no. 1, pp. 17–20, 2013. [Google Scholar]
- S. Wahwakhi, C. Kusmana, and D. Iswantini, “Potency of Acanthus ilicifolius as phytoremediation agent against copper pollution in Jagir River estuary, Wonorejo village, Surabaya, Indonesia,” AACL Bioflux, vol. 10, no. 5, pp. 1186–1197, 2017. [Google Scholar]
- D. Kumar, N. Vats, K. Saroha, and A. C. Rana, “Phytosomes as Emerging Nanotechnology for Herbal Drug Delivery,” Sustainable Agriculture Reviews, vol. 43, pp. 217–237, 2020, doi: 10.1007/978-3-030-41838-0_7. [CrossRef] [Google Scholar]
- A. Gandhi, A. Dutta, A. Pal, and P. Bakshi, “Recent Trends of Phytosomes for Delivering Herbal Extract with Improved Bioavailability,” Journal of Pharmacognosy and Phytochemistry, vol. 1, no. 4, pp. 6–14, 2012. [Google Scholar]
- H. S. Rahman et al., “Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications,” International Journal of Nanomedicine, vol. 15, pp. 2439–2483, Apr. 2020, doi: 10.2147/IJN.S227805. [CrossRef] [Google Scholar]
- B. Yang, Y. Dong, F. Wang, and Y. Zhang, “Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols,” Molecules, vol. 25, no. 20. pp. 1–36, 2020. doi: 10.3390/molecules25204613. [Google Scholar]
- A. N. Panche, A. D. Diwan, and S. R. Chandra, “Flavonoids: An overview,” Journal of Nutritional Science, vol. 5, no. 47, pp. 1–15, 2016, doi: 10.1017/jns.2016.41. [CrossRef] [Google Scholar]
- T. Amin, S. Bhat, and S. Vikas Bhat, “A Review on Phytosome Technology as a Novel Approach to Improve The Bioavailability of Nutraceuticals,” International Journal of Advancements in Research & Technology, vol. 1, no. 3, pp. 1–15, 2012. [Google Scholar]
- A. R. Abubakar and M. Haque, “Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes.,” Journal of pharmacy & bioallied sciences, vol. 12, no. 1, pp. 1–10, 2020, doi: 10.4103/jpbs.JPBS_175_19. [CrossRef] [PubMed] [Google Scholar]
- J. K. Patra et al., “Nano based drug delivery systems: recent developments and future prospects,” Journal of Nanobiotechnology, vol. 16, no. 1, p. 71, 2018, doi: 10.1186/s12951-018-0392-8. [CrossRef] [PubMed] [Google Scholar]
- Mc. Martínez-Ballesta, Á. Gil-Izquierdo, C. García-Viguera, and R. Domínguez-Perles, “Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New ‘Smart-Foods’ for Health,” Foods, vol. 7, no. 5. 2018. doi: 10.3390/foods7050072. [Google Scholar]
- E. Spanidi et al., “A New Controlled Release System for Propolis Polyphenols and Its Biochemical Activity for Skin Applications,” Plants, vol. 10, no. 2. 2021. doi: 10.3390/plants10020420. [CrossRef] [PubMed] [Google Scholar]
- P. Waridel, J. L. Wolfender, J. B. Lachavanne, and K. Hostettmann, “ent-Labdane glycosides from the aquatic plant Potamogeton lucens and analytical evaluation of the lipophilic extract constituents of various Potamogeton species,” Phytochemistry, vol. 65, no. 7, pp. 945–954, 2004, doi: 10.1016/j.phytochem.2004.01.018. [CrossRef] [PubMed] [Google Scholar]
- K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, “Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization,” in Handbook of Materials Characterization, S. K. Sharma, Ed., Cham: Springer International Publishing, 2018, pp. 113–145. doi: 10.1007/978-3-319-92955-2_4. [Google Scholar]
- G. A. Gayathri and M. Gayathri, “Preliminary qualitative phytochemical screening and in vitro hypoglycemic potential of Acanthus ilicifolius and Evolvulus emerginatus,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 6, pp. 362–365, 2014. [Google Scholar]
- D. Andriani, S. Revianti, and W. Prananingrum, “Identification of compounds isolated from a methanolic extract of acanthus ilicifolius leaves and evaluation of their antifungal and antioxidant activity,” Biodiversitas, vol. 21, no. 6, pp. 2521–2525, 2020, doi: 10.13057/biodiv/d210625. [Google Scholar]
- A. Poorna, Chundakkadu, K. Maney, Sathish, S. R, T, and V. Soniya, Eppurathu, “Phytochemical analysis and in vitro screening for biological activities of Acanthus ilicifolius,” Journal of Pharmacy Research, vol. 4, no. 7, pp. 1977–1981, 2011. [Google Scholar]
- R. Majumder, L. Adhikari, M. Dhara, and J. Sahu, “Evaluation of anti-inflammatory, analgesic and TNF-α inhibition (upon RAW 264.7 cell line) followed by the selection of extract (leaf and stem) with respect to potency to introduce anti-oral-ulcer model obtained from Olax psittacorum (Lam.) Vahl in addition to GCMS illustration,” Journal of Ethnopharmacology, vol. 263, p. 113146, 2020, doi: https://doi.org/10.1016/j.jep.2020.113146. [CrossRef] [PubMed] [Google Scholar]
- D. McGinty, C. S. Letizia, and A. M. Api, “Fragrance material review on isophytol,” Food and Chemical Toxicology, vol. 48, pp. S76–S81, 2010, doi: https://doi.org/10.1016/j.fct.2009.11.015. [CrossRef] [PubMed] [Google Scholar]
- A. Chisvert, M. López-Nogueroles, P. Miralles, and A. Salvador, “Perfumes in Cosmetics,” in Analysis of Cosmetic Products, Elsevier, 2018, pp. 225–248. doi: 10.1016/B978-0-444-63508-2.00010-2. [Google Scholar]
- M. Kagoura, C. Matsui, and M. Morohashi, “Phytol Is a Novel Tumor Promoter on ICR Mouse Skin,” Japanese Journal of Cancer Research, vol. 90, no. 4, pp. 377–384, Apr. 1999, doi: https://doi.org/10.1111/j.1349-7006.1999.tb00758.x. [CrossRef] [PubMed] [Google Scholar]
- T. Goto et al., “Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes,” Biochemical and Biophysical Research Communications, vol. 337, no. 2, pp. 440–445, 2005, doi: https://doi.org/10.1016/j.bbrc.2005.09.077. [CrossRef] [PubMed] [Google Scholar]
- X.-H. Tang, M.-J. Suh, R. Li, and L. J. Gudas, “Cell proliferation inhibition and alterations in retinol esterification induced by phytanic acid and docosahexaenoic acid,” Journal of Lipid Research, vol. 48, no. 1, pp. 165–176, 2007, doi: https://doi.org/10.1194/jlr.M600419-JLR200. [CrossRef] [PubMed] [Google Scholar]
- D. Saikia et al., “Antitubercular potential of some semisynthetic analogues of phytol,” Bioorganic & Medicinal Chemistry Letters, vol. 20, no. 2, pp. 508–512, 2010, doi: https://doi.org/10.1016/j.bmcl.2009.11.107. [CrossRef] [PubMed] [Google Scholar]
- P. Pongprayoon, U. Jacobsson, M. Lindström, U. Bohlin, L, and Baeckström, “Antispasmodic Activity of β-Damascenone and E-Phytol Isolated from Ipomoea pes-caprae,” Planta Med, vol. 58, no. 01, pp. 19–21, 1992, doi: 10.1055/s-2006-961381. [CrossRef] [PubMed] [Google Scholar]
- Md. T. Islam et al., “Phytol in a pharma-medicostance,” Chemico-Biological Interactions, vol. 240, pp. 60–73, 2015, doi: https://doi.org/10.1016/j.cbi.2015.07.010. [CrossRef] [PubMed] [Google Scholar]
- M. Abdassah, “Nanopartikel dengan gelasi ionik,” Jurnal Farmaka, vol. 15, no. 1, pp. 45–52, 2017. [Google Scholar]
- S. E. McNeil, “Nanotechnology for the biologist,” Journal of Leukocyte Biology, vol. 78, no. 3, pp. 585–594, 2005, doi: 10.1189/jlb.0205074. [CrossRef] [PubMed] [Google Scholar]
- A. Amalia, M. Jufri, and E. Anwar, “Preparasi dan Karakterisasi Sediaan Solid Lipid Nanoparticle (SLN) Gliklazid,” Jurnal Ilmu Kefarmasian Indonesia, vol. 13, no. 1, pp. 108–114, 2014. [Google Scholar]
- M. Joshi, A. Bhattacharyya, and S. W. Ali, “Characterization techniques for nanotechnology applications in textiles,” Indian Journal of Fibre and Textile Research, vol. 33, no. 3, pp. 304–317, 2008. [Google Scholar]
- C. Stadtländer, A. Méndez-Vilas, and J. Diaz, “Scanning Electron Microscopy and Transmission Electron Microscopy of Mollicutes: Challenges and Opportunities,” Modern Research and Educational Topics in Microscopy, Jan. 2007. [Google Scholar]
- O. P. Choudhary and P. Choudhary, “Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components,” International Journal of Current Microbiology and Applied Sciences, vol. 6, pp. 1877–1882, May 2017, doi: 10.20546/ijcmas.2017.605.207. [CrossRef] [Google Scholar]
- W. Taurina, R. Sari, U. C. Hafinur, S. Wahdaningsih, and Isnindar, “Optimasi Kecepatan dan Lama Pengadukan Terhadap Ukuran Nanopartikel Kitosan-Ekstrak Etanol 70 % Kulit Jeruk Siam (Citrus Nobilis L . Var Microcarpa) Optimization Of Stirring Speed And Stirring Time Toward,” Traditional Medicine Journal, vol. 22, no. April, pp. 16–20, 2017. [Google Scholar]
- E. K. Sabdoningrum, S. Hidanah, and S. Chusniati, “Characterization and Phytochemical Screening of Meniran ( Phyllanthus niruri Linn ) Extract ’ s Nanoparticles Used Ball Mill Method,” vol. 13, no. 6, pp. 1568–1572, 2021. [Google Scholar]
- P. Husni and K. Puspitaningrum, “Pengembangan Formula Nano-Fitosom Serbuk Liofilisasi Seduhan Teh Hitam (Camellia Sinensis L. Kuntze),” IJPST, vol. 4, 2017. [Google Scholar]
- Z. Nazemoroaya, M. Sarafbidabad, A. Mahdieh, and D. Zeini, “Use of Saponinosomes from Ziziphus spina-christi as Anticancer Drug Carriers,” ACS Omega, vol. 7, pp. 28421–28433, 2022, doi: 10.1021/acsomega.2c03109. [CrossRef] [PubMed] [Google Scholar]
- S. Nandhini and K. Ilango, “Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach,” vol. 16, no. February, pp. 103–117, 2021, doi: 10.4103/1735-5362.305193. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.