Open Access
Issue |
BIO Web Conf.
Volume 135, 2024
4th International Conference on Pharmaceutical Updates (ICPU 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 10 | |
Section | Active Ingredients Discovery | |
DOI | https://doi.org/10.1051/bioconf/202413501004 | |
Published online | 07 November 2024 |
- Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 2018;7:2. https://doi.org/10.1186/s40035-018-0107-y. [CrossRef] [PubMed] [Google Scholar]
- Folch J, Petrov D, Ettcheto M, Abad S, SánchezLópez E, García ML, et al. Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment. Neural Plasticity 2016;2016:1–15. https://doi.org/10.1155/2016/8501693. [CrossRef] [Google Scholar]
- Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular Basis of Familial and Sporadic Alzheimer’s Disease. CAR 2016;13:952–63. https://doi.org/10.2174/1567205013666160314150501. [CrossRef] [Google Scholar]
- Brookmeyer R, Evans DA, Hebert L, Langa KM, Heeringa SG, Plassman BL, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s & Dementia 2011;7:61–73. https://doi.org/10.1016/j.jalz.2010.11.007. [CrossRef] [PubMed] [Google Scholar]
- Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu Z, et al. New Insights Into the Pathogenesis of Alzheimer’s Disease. Front Neurol 2020;10:1312. https://doi.org/10.3389/fneur.2019.01312. [CrossRef] [PubMed] [Google Scholar]
- Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry 2021;26:5481–503. https://doi.org/10.1038/s41380-021-01249-0. [CrossRef] [PubMed] [Google Scholar]
- Miculas DC, Negru PA, Bungau SG, Behl T, Hassan SSU, Tit DM. Pharmacotherapy Evolution in Alzheimer’s Disease: Current Framework and Relevant Directions. Cells 2022;12:131. https://doi.org/10.3390/cells12010131. [CrossRef] [PubMed] [Google Scholar]
- Gong C-X, Dai C-L, Liu F, Iqbal K. MultiTargets: An Unconventional Drug Development Strategy for Alzheimer’s Disease. Front Aging Neurosci 2022;14:837649. https://doi.org/10.3389/fnagi.2022.837649. [CrossRef] [PubMed] [Google Scholar]
- Dai M-H, Zheng H, Zeng L-D, Zhang Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget 2018;9:15132–43. https://doi.org/10.18632/oncotarget.23738. [CrossRef] [PubMed] [Google Scholar]
- Chen G, Xu T, Yan Y, Zhou Y, Jiang Y, Melcher K, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017;38:1205–35. https://doi.org/10.1038/aps.2017.28. [CrossRef] [PubMed] [Google Scholar]
- Jalili-Baleh L, Babaei E, Abdpour S, Nasir Abbas Bukhari S, Foroumadi A, Ramazani A, et al. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. European Journal of Medicinal Chemistry 2018;152:570–89. https://doi.org/10.1016/j.ejmech.2018.05.004. [CrossRef] [PubMed] [Google Scholar]
- Wang W-Y, Tan M-S, Yu J-T, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015;3:136. https://doi.org/10.3978/j.issn.23055839.2015.03.49. [PubMed] [Google Scholar]
- Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity 2020;2020:1–13. https://doi.org/10.1155/2020/8825387. [Google Scholar]
- Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 2015;58:4066–72. https://doi.org/10.1021/acs.jmedchem.5b00104. [CrossRef] [PubMed] [Google Scholar]
- Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci 2017;4:160696. https://doi.org/10.1098/rsos.160696. [CrossRef] [PubMed] [Google Scholar]
- Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M. An In Vitro Model for Neuroscience: Differentiation of SH-SY5Y Cells into Cells with Morphological and Biochemical Characteristics of Mature Neurons. JAD 2010;20:1069–82. https://doi.org/10.3233/JAD-2010-091363. [CrossRef] [Google Scholar]
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/jcc.21256. [CrossRef] [PubMed] [Google Scholar]
- Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 2017;13:e1005659. https://doi.org/10.1371/journal.pcbi.1005659. [CrossRef] [PubMed] [Google Scholar]
- Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717. [CrossRef] [PubMed] [Google Scholar]
- Arsito PN, Waiwut P, Yenjai C, Arthan S, Monthakantirat O, Nualkaew N, et al. Multifunctional effect of flavonoids from Millettia brandisiana against Alzheimer’s disease pathogenesis. Heliyon 2023;9:e21894. https://doi.org/10.1016/j.heliyon.2023.e21894. [CrossRef] [PubMed] [Google Scholar]
- Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, et al. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A 2005;102:17342–7. https://doi.org/10.1073/pnas.0506723102. [CrossRef] [PubMed] [Google Scholar]
- Eastman P, Galvelis R, Peláez RP, Abreu CRA, Farr SE, Gallicchio E, et al. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. J Phys Chem B 2024;128:109–16. https://doi.org/10.1021/acs.jpcb.3c06662. [CrossRef] [PubMed] [Google Scholar]
- Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B 2022;12:3049–62. https://doi.org/10.1016/j.apsb.2022.02.002. [Google Scholar]
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Advanced Drug Delivery Reviews 2001;46:3–26. https://doi.org/10.1016/S0169409X(00)00129-0. [CrossRef] [Google Scholar]
- Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem 2002;45:2615–23. https://doi.org/10.1021/jm020017n. [CrossRef] [PubMed] [Google Scholar]
- Hou T, Wang J, Zhang W, Xu X. ADME Evaluation in Drug Discovery. 7. Prediction of Oral Absorption by Correlation and Classification. J Chem Inf Model 2007;47:208–18. https://doi.org/10.1021/ci600343x. [CrossRef] [PubMed] [Google Scholar]
- Suenderhauf C, Hammann F, Huwyler J. Computational Prediction of Blood-Brain Barrier Permeability Using Decision Tree Induction. Molecules 2012;17:10429–45. https://doi.org/10.3390/molecules170910429. [CrossRef] [PubMed] [Google Scholar]
- Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J Chem Inf Model 2012;52:3099–105. https://doi.org/10.1021/ci300367a. [CrossRef] [PubMed] [Google Scholar]
- Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species. Chem Res Toxicol 2010;23:171–83. https://doi.org/10.1021/tx900326k. [CrossRef] [PubMed] [Google Scholar]
- Guo J-P, Arai T, Miklossy J, McGeer PL. Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proceedings of the National Academy of Sciences 2006;103:1953–8. https://doi.org/10.1073/pnas.0509386103. [CrossRef] [PubMed] [Google Scholar]
- Murphy MP, LeVine H. Alzheimer’s Disease and the Amyloid-β Peptide. JAD 2010;19:311–23. https://doi.org/10.3233/JAD-2010-1221. [CrossRef] [Google Scholar]
- Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, et al. In silico study of amyloid β-protein folding and oligomerization. Proc Natl Acad Sci USA 2004;101:17345–50. https://doi.org/10.1073/pnas.0408153101. [CrossRef] [PubMed] [Google Scholar]
- Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci USA 2013;110:9758–63. https://doi.org/10.1073/pnas.1218402110. [CrossRef] [PubMed] [Google Scholar]
- Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends in Pharmacological Sciences 2014;35:127–35. https://doi.org/10.1016/j.tips.2013.12.005. [CrossRef] [PubMed] [Google Scholar]
- Meisl G, Kirkegaard JB, Arosio P, Michaels TCT, Vendruscolo M, Dobson CM, et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 2016;11:252–72. https://doi.org/10.1038/nprot.2016.010. [CrossRef] [PubMed] [Google Scholar]
- Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and Proteolytic Processing of APP. Cold Spring Harbor Perspectives in Medicine 2012;2:a006270–a006270. https://doi.org/10.1101/cshperspect.a006270. [CrossRef] [PubMed] [Google Scholar]
- Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology 2018;14:450–64. https://doi.org/10.1016/j.redox.2017.10.014. [CrossRef] [PubMed] [Google Scholar]
- Tabner BJ, El-Agnaf OMA, Turnbull S, German MJ, Paleologou KE, Hayashi Y, et al. Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia. Journal of Biological Chemistry 2005;280:35789–92. https://doi.org/10.1074/jbc.C500238200. [CrossRef] [Google Scholar]
- Andronie-Cioara FL, Ardelean AI, NistorCseppento CD, Jurcau A, Jurcau MC, Pascalau N, et al. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer’s Disease Progression. IJMS 2023;24:1869. https://doi.org/10.3390/ijms24031869. [CrossRef] [Google Scholar]
- Shen C, Chen Y, Liu H, Zhang K, Zhang T, Lin A, et al. Hydrogen Peroxide Promotes Aβ Production through JNK-dependent Activation of γ-Secretase. Journal of Biological Chemistry 2008;283:17721–30. https://doi.org/10.1074/jbc.M800013200. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.