Open Access
Issue |
BIO Web Conf.
Volume 136, 2024
The 13th International and National Seminar of Fisheries and Marine Science (ISFM XIII 2024)
|
|
---|---|---|
Article Number | 04004 | |
Number of page(s) | 16 | |
Section | Marine, Fisheries Biotechnology, Ocenography, and Fishing Technology | |
DOI | https://doi.org/10.1051/bioconf/202413604004 | |
Published online | 11 November 2024 |
- R. Hidayat and M. Zainuddin, Skipjack tuna fishing ground based on oceanography satellite image data in fisheries management area (FMA) 713, Torani: JFMarSci. 3, 2, 5160 (2020). https://oceancolor.gsfc.nasa.gov/ [Google Scholar]
- A.R.S. Putri, M. Zainuddin, Application of remotely sensed satellite data to identify Skipjack Tuna distributions and abundance in the coastal waters of Bone Gulf, in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Mar. (2019). https://doi.org/10.1088/1755-1315/241/1/012012 [Google Scholar]
- U. Tangke, F.D. Silooy, Rochmady, Z. Saing, Sea surface temperature and chlorophyll-a condition of skipjack tuna (Katsuwonus Pelamis) catching area in Ternate Island marine waters, in Journal of Physics: Conference Series, Institute of Physics Publishing, May (2020). https://doi.org/10.1088/1742-6596/1517/1/012039 [Google Scholar]
- M. Zainuddin, S. Safruddin, A. Farhum, B. Budimawan, R. Hidayat, M.B. Selamat, Satellite-based ocean color and thermal signatures defining habitat hotspots and the movement pattern for commercial skipjack tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific. Remote Sens (Basel). 15, 5 (2023) https://doi.org/10.3390/rs15051268 [Google Scholar]
- T. Elepathage, T. Danling, Detection of pelagic habitats and abundance of skipjack tuna in relation to the environment in the Indian Ocean around Sri Lanka. Biological Oceanography at PeerJ Preprints. (2019). https://doi.org/10.7287/peerj.preprints.27663v2 [Google Scholar]
- R. Hidayat, M. Zainuddin, A. Mallawa, M.A. Mustapha, A.R.S. Putri. Mapping spatial- temporal skipjack tuna habitat as a reference for fish aggregating devices (Fads) settings in Makassar strait, Indonesia. Biodiversitas. 22, 9, 3637–3647, (2021). https://doi.org/10.13057/biodiv/d220905 [Google Scholar]
- X.H. Wu, Y. Chang, T.Y. Liao, M.M. Ding, C.C. Ke, Real-time multi-month forecasting of skipjack tuna (Katsuwonus pelamis) habitat in the western and central Pacific Ocean for improved fishing efficiency and fisheries management. ICES Journal of Marine Science. 80, 10, 2490–2503, (2023). https://doi.org/10.1093/icesjms/fsad159 [CrossRef] [Google Scholar]
- Safruddin, R. Hidayat, S. A. Farhum, and M. Zainuddin, The use of statistical models in identifying skipjack tuna habitat characteristics during the Southeast Monsoon in the Bone Gulf, Indonesia. Biodiversitas 23, 4, 2231–2237, (2022) https://doi.org/10.13057/biodiv/d230459 [Google Scholar]
- V.K. Yadav, S. Jahageerdar, J. Adinarayana, Comparison between different modeling techniques for assessing the role of environmental variables in predicting the catches of major pelagic fishes off India’s north-west coast. (2022) [Google Scholar]
- J.E. Salazar, I.F. Benavides, C.V. Portilla Cabrera, A. I. Guzmán, J.J. Selvaraj, Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean. Reg. Stud. Mar. Sci. 45, (2021). https://doi.org/10.1016/j.rsma.2021.101829 [Google Scholar]
- H. Wibisana, B.M. Sukotjo, U. Lasminto, Analysis of correlation and mapping of chlorophyll-a concentrations and sea surface temperatures in coastal areas based on terra MODIS satellite image data. Makara Journal of Technology. 25, 1, 30 (2021). https://doi.org/10.7454/mst.v25i1.3810 [CrossRef] [Google Scholar]
- J.H. Kim, D.H. Lee, J.H. Kang, Associating the spatial properties of a watershed with downstream Chl-a concentration using spatial analysis and generalized additive models. Water Res. 154, 387–401 (2019). https://doi.org/10.1016/j.watres.2019.02.010 [CrossRef] [Google Scholar]
- R. Simard, P. L’ecuyer, Computing the Two-Sided Kolmogorov-Smirnov Distribution. (2011). http://www.jstatsoft.org/ [Google Scholar]
- P. Govender, V. Sivakumar, Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980-2019). Elsevier B.V. (2020). https://doi.org/10.1016/j.apr.2019.09.009 [Google Scholar]
- M. Lakićević, Creating maps in r (case study: national park ‘Fruška Gora’). Contemporary Agriculture. 70, 1-2, 41–45, (2021). https://doi.org/10.2478/contagri-2021-0008 [CrossRef] [Google Scholar]
- B.K. Kilinç, H.D. Asfha, Selection of Splines Models in the Presence of Multicollinearity and Outliers. Turkiye Klinikleri Journal of Biostatistics. 12, 2, 183–192, (2020). https://doi.org/10.5336/biostatic.2020-74122 [CrossRef] [Google Scholar]
- B. Wang, Z. Mao, Outlier detection based on a dynamic ensemble model: Applied to process monitoring. Information Fusion, 51, 244–258 (2019). https://doi.org/10.1016/j.inffus.2019.02.006 [CrossRef] [Google Scholar]
- H. Sun, Y. Cui, H. Wang, H. Liu, T. Wang, Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data. BMC Bioinformatics. 21, 1, (2020). https://doi.org/10.1186/s12859-020-03653-9 [CrossRef] [Google Scholar]
- G. Manimannan, M. Salomi, R.L. Priya, R. Saranraj, Detecting outliers using R package in fitting data with linear and nonlinear regression models. International Journal of Scientific and Innovative Mathematical Research. 8, 4 (2020). https://doi.org/10.20431/2347-3142.0804001 [Google Scholar]
- M. Awawdeh, T. Faisal, A. Bashir, A. Sheikh, Application of Outlier Detection using ReWeighted Least Squares and R-squared for IoT Extracted Data. in 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates: IEEE, (2019), 1–6 https://doi.org/10.1109/ICASET.2019.8714261 [Google Scholar]
- A.A. Shehadeh, S.M. Alwadi, M.I. Almaharmeh, Detecting and analysing possible outliers in global stock market returns. Cogent Economics and Finance. 10, 1 (2022). https://doi.org/10.1080/23322039.2022.2066762 [CrossRef] [Google Scholar]
- A. Fitrianto, W.Z.A. Wan Muhamad, S. Kriswan, B. Susetyo, Comparing Outlier Detection Methods using Boxplot Generalized Extreme Studentized Deviate and Sequential Fences. Aceh International Journal of Science and Technology. 11, 1, 38–45, (2022). https://doi.org/10.13170/aijst.11.1.23809 [CrossRef] [Google Scholar]
- A.G. O’Carroll, E.M. Armstrong, H. Beggs, M. Bouali, K.S. Casey, G.K. Corlett, Observational needs of sea surface temperature. Frontiers Media S.A. (2019). https://doi.org/10.3389/fmars.2019.00420. [Google Scholar]
- A. Pisano, S. Marullo, V. Artale, F. Falcini, C. Yang, F.E. Leonelli, New evidence of Mediterranean climate change and variability from Sea Surface Temperature observations. Remote Sens. (Basel). 12, 1 (2020). https://doi.org/10.3390/RS12010132 [Google Scholar]
- J. Karch, Improving on adjusted R-squared. Collabra Psychol. 6, 1 (2020). https://doi.org/10.1525/collabra.343 [CrossRef] [Google Scholar]
- A. Murari, E. Peluso, F. Cianfrani, P. Gaudio, M. Lungaroni, On the use of entropy to improve model selection criteria. Entropy. 21, 4 (2019). https://doi.org/10.3390/e21040394 [CrossRef] [Google Scholar]
- R. Salmerón, C. García, J. García, Multicoll: An R package to detect multicollinearity. arXiv: Computation. (2019). https://doi.org/10.48550/arXiv.1910.14590 [Google Scholar]
- J.H. Kim, Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 72, 6, 558–569, (2019). https://doi.org/10.4097/kja.19087 [CrossRef] [PubMed] [Google Scholar]
- N.A.M.R. Senaviratna, T.M.J.A. Cooray, Diagnosing multicollinearity of logistic regression model. Asian Journal of Probability and Statistics, 1–9 (2019). https://doi.org/10.9734/ajpas/2019/v5i230132 [CrossRef] [Google Scholar]
- R. Raidou, E. Gröller, M. Eisemann, Relaxing dense scatter plots with pixel-based mappings. IEEE Trans. Vis. Comput. Graph. 25, 2205–2216 (2019). https://doi.org/10.1109/TVCG.2019.2903956 [CrossRef] [PubMed] [Google Scholar]
- Q.V. Nguyen, M. Lin Huang, S. Simoff, Enhancing Scatter-plots with Start-plots for visualising multi-dimensional data. in Proceedings of the International Conference on Information Visualisation, Institute of Electrical and Electronics Engineers Inc., Sep. 8085 (2020). https://doi.org/10.1109/IV51561.2020.00023 [Google Scholar]
- F. Meng, J. Gu, L.E. Wang, Z. Qin, M. Gao, J. Chen, A quantitative model based on grey theory for sea surface temperature prediction. Front Environ Sci. 10, (2022). https://doi.org/10.3389/fenvs.2022.1014856 [Google Scholar]
- W. Shao, T. Jiang, X. Jiang, Y. Zhang, W. Zhou, Evaluation of sea surface winds and waves retrieved from the Chinese HY-2B data. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 14, 9624–9635 (2021). https://doi.org/10.1109/JSTARS.2021.3112760 [CrossRef] [Google Scholar]
- H. Han, C. Yang, H. Zhang, Z. Fang, B. Jiang, B. Su, Environment variables affect CPUE and spatial distribution of fishing grounds on the light falling gear fishery in the northwest Indian Ocean at different time scales. Front. Mar. Sci. 9, (2022). https://doi.org/10.3389/fmars.2022.939334 [Google Scholar]
- Y. Feng, P. Wu, X. Tong, P. Li, R. Wang, Y. Zhou, The effects of factor generalization scales on the reproduction of dynamic urban growth. Geo-Spatial Information Science. 25, 3, 457–475, (2022). https://doi.org/10.1080/10095020.2022.2025748 [CrossRef] [Google Scholar]
- C. Hua, Q. Zhu, Y. Shi, Y. Liu, Comparative analysis of CPUE standardization of Chinese Pacific saury (Cololabis saira) fishery based on GLM and GAM. Acta Oceanologica Sinica, 38, 10, 100–110, (2019). https://doi.org/10.1007/s13131-019-1486-3 [CrossRef] [Google Scholar]
- N. Langrené, X. Warin, Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. Comput Stat. Data Anal. 162, (2021). https://doi.org/10.1016/j.csda.2021.107267 [Google Scholar]
- J. Ren, A.G. Bushmakin, P.R. Cislo, L. Abraham, J.C. Cappelleri, R.H. Dworkin, Meaningful within-patient change for clinical outcome assessments: model-based approach versus cumulative distribution functions. J. Biopharm. Stat. (2023). https://doi.org/10.1080/10543406.2023.2281575 [Google Scholar]
- Z. Cong, L. Chu, Y. Yang, J. Pei, Comprehensible Counterfactual Explanation on Kolmogorov-Smirnov Test. Proc. VLDB Endow. 14, 1583–1596 (2021). https://doi.org/10.14778/3461535.3461546 [CrossRef] [Google Scholar]
- Y. Hong, O. Linton, B. Mccabe, J. Sun, S. Wang, Kolmogorov-Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach. SSRN (2023). https://dx.doi.org/10.2139/ssrn.3850894 [Google Scholar]
- R. Safruddin, Hidayat, M. Zainuddin, Skipjack tuna fishing ground based on oceanography satellite image data in fisheries management area (FMA) 713. Torani: JFMarSci. 3, 2, 51–60 (2020). https://oceancolor.gsfc.nasa.gov/ [CrossRef] [Google Scholar]
- U. Tangke, F.D. Silooy, Rochmady, Z. Saing, Sea surface temperature and chlorophyll-a condition of skipjack tuna (Katsuwonus Pelamis) catching area in Ternate Island marine waters, in Journal of Physics: Conference Series, Institute of Physics Publishing, May (2020). https://doi.org/10.1088/1742-6596/1517/1/012039 [Google Scholar]
- W.A.L. Ningsih, W.A. Lestariningsih, S. Heltria, M.H.I. Khaldun, Analysis of the relationship between chlorophyll-a and sea surface temperature on marine capture fisheries production in Indonesia: 2018, in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Dec. (2021). https://doi.org/10.1088/1755-1315/944/1/012057 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.