Open Access
Issue |
BIO Web Conf.
Volume 136, 2024
The 13th International and National Seminar of Fisheries and Marine Science (ISFM XIII 2024)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 9 | |
Section | Ecotoxicology, Water Pollution, Fish Disease | |
DOI | https://doi.org/10.1051/bioconf/202413605004 | |
Published online | 11 November 2024 |
- C. J. Sindermann, The Shell Disease Syndrome in Marine Crustaceans. (National Oceanic and Atmospheric Administration (1989) [Google Scholar]
- C. J. Noga, Shell disease in marine crustaceans: concluding remarks. J. Shellfish Res. 10, 505–506 (1991) [Google Scholar]
- D.W. Cook, S.R. Lofton, Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab (Callinectes sapidus). J. Wildl. Dis. 9, 54–159 (1973). https://doi.org/10.7589/0090-3558-9.2.154 [Google Scholar]
- J.A. Baross, P.A. Tester, R.Y. Morita, Incidence, microscopy, and etiology of exoskeleton lesions in the Tanner crab, Chionoecetes tanneri. J. Fish Res. Bd. Can. 35, 141–1149 (1978). https://doi.org/10.1139/f78-179 [Google Scholar]
- S.C. Malloy, Bacteria induced shell disease of lobsters (Homarus americanus). J. Wildl. Dis. 14, 2–10 (1978). https://doi.Org/10.7589/0090-3558-14.1.2 [CrossRef] [PubMed] [Google Scholar]
- S. Aftabuddin, M.N.A. Sikder, M.A. Rahman, M. Zafar, Antibiotic resistance of Vibrio bacteria isolated from mud crab Scylla serrata of Chakoria Coast, Bangladesh. Res. J. Pharm. Biol. Chem. Sci. 4, 325 (2013) [Google Scholar]
- D. J. Alderman, Fusarium solanicausing an exoskeletal pathology in cultured lobsters, Homarus vulgaris. Transactions Br. Mycological Soc. 76, 25–27 (1981). https://doi.org/10.1016/S0007-1536(81)80004-6 [CrossRef] [Google Scholar]
- J.S. Young, J.B Pearce JB, Shell disease in crabs and lobsters from New York Bight. Mar. Pollution Bull. 6, 101–105 (1975). https://doi.org/10.1016/0025-326X(75)90268-4 [CrossRef] [Google Scholar]
- E.J. Noga, R. Smolowitz, L.H. Khoo. Pathology of shell disease in the blue crab, Callinectes sapidus Rathbun, (Decapoda: Portunidae). J. Fish Dis. 23, 389–399 (2000). https://doi.org/10.1046/j.1365-2761.2000.00249.x [CrossRef] [Google Scholar]
- A.G. Decembrana. First National Mud Crab Congress, 16-18 November 2015, Iloilo City, Philippines. Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. p. 123–126. (2017). [Google Scholar]
- J.O. Whitaker, H.K. Dannelly, D.A. Prentice. Chitinase in insectivorous bats. J. Mammalogy. 85, 5–18 (2004). https://doi.org/10.1644/1545-1542(2004)085<0015:CIIB>2.0.CO;2 [Google Scholar]
- A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966). https://doi.org/10.1093/ajcp/45.4_ts.493 [CrossRef] [PubMed] [Google Scholar]
- E.A. Tendencia. Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment. Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. pp. 13–29. (2004) [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed. CLSI guideline M45. Wayne, PA. (2015) [Google Scholar]
- V. Bianciotto, E. Lumini, P. Bonfante, P. Vandamme. “Candidatus Glomeribacter gigasporarum” gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int. J. Syst. Evol. Microbiol. 53, 121–124 (2003). https://doi.org/10.1099/ijs.0.02382-0 [CrossRef] [PubMed] [Google Scholar]
- M.N.N.N. Shikongo-Nambabi, P.M. Chimwamurombe, S.N Venter, S. N. Identification of putative Vibrio species isolated from processed marine fish using thiosulphate-citrate-bile-sucrose (TCBS) agar. British Biotech. J. 2, 229–246 (2012). https://doi.org/10.9734/BBJ/2012/1507 [CrossRef] [Google Scholar]
- D.E. Hunt, D. Gevers, N.M. Vahora, M.F. Polz. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl. Environ. Microbiol. 74 (1):44–51 (2008). https://doi.org/10.1128/AEM.01412-07 [CrossRef] [PubMed] [Google Scholar]
- X. He, M. Yu, Y. Wu, L. Ran, W. Liu, X.-H. Zhang. Two highly similar chitinases from marine Vibrio species have different enzymatic properties. Marine Drugs. 18, 139 (2020). https://doi.org/10.3390/md18030139 [CrossRef] [Google Scholar]
- H. Lin, M. Yu, X. Wang, X.-H. Zhang. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics. 19, 135 (2018). https://doi.org/10.1186/s12864-018-4531-2 [CrossRef] [Google Scholar]
- L. Jayasree, P. Janakiram, R. Madhavi. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J. World Aquacult. Soc. 37, 523–532 (2006). https://doi.Org/10.1111/j.1749-7345.2006.00066.x [CrossRef] [Google Scholar]
- M. Mancuso, M.T. Costanzo, G. Maricchiolo, M. Gristina, R. Zaccone, D. Cuccu, L. Genovese. Characterization of chitinolytic bacteria and histological aspects of shell disease syndrome in European spiny lobsters (Palinurus elephas) (Fabricius 1787). J. Invertebrate Pathol. 104, 242–244 (2010). https://doi.org/10.1016/j.jip.2010.03.009 [CrossRef] [Google Scholar]
- M. Mancuso, R. Zaccone, F. Carella, P. Maiolino, G. De Vico. First episode of shell disease syndrome in Carcinus aestuarii (Crustacea: Decapoda: Portunidae) in the Volturno River. J. Aquac. Res. Dev. 4, 5 (2013). http://dx.doi.org/10.4172/2155-9546.1000191 [Google Scholar]
- F. Eddy, A. Powell, S. Gregory, L.M. Nunan, D.V. Lightner, P.J. Dyson, A.F. Rowley, R.J. Shields. A novel bacterial disease of the European shore crab, Carcinus maenas - molecular pathology and epidemiology. Microbiology. 153, 2839–2849 (2007). https://doi.org/10.1099/mic.0.2007/008391-0 [CrossRef] [PubMed] [Google Scholar]
- J.M. Janda, S.L. Abbott. The genus Shewanella: from the briny depths below to human pathogen. Critical Rev. Microbiol. 40, 293–312 (2014). https://doi.org/10.3109/1040841X.2012.726209 [CrossRef] [PubMed] [Google Scholar]
- L. Porter, Iv. M. Butler, R.H. Reeves. Normal bacterial flora of the spiny lobster Panulirus argus and its possible role in shell disease. Mar. Freshwater Res. 52, 1401. (2001). https://doi.org/10.1071/MF01092 [CrossRef] [Google Scholar]
- A.Y. Chistoserdov, R. Smolowitz, F. Mirasol, A. Hsu. Culture-dependent characterization of the microbial community associated with epizootic shell disease lesions in American lobster, Homarus americanus. J. Shellfish Res. 24, 741–747 (2005). https://doi.org/10.2983/0730-8000(2005)24[741:CCOTMC]2.0.CO;2 [CrossRef] [Google Scholar]
- N. Bergen, P. Krämer, J. Romberg, A. Wichels, G. Gerlach, T. Brinkhoff. Shell disease syndrome is associated with reduced and shifted epibacterial diversity on the carapace of the crustacean Cancerpagurus. Microbiol. Spectr. 10, e03419–22 (2022). https://doi.org/10.1128/spectrum.03419-22 [CrossRef] [Google Scholar]
- L. Jayasree, P. Janakiram, R. Madhavi R. Isolation and characterization of bacteria associated with cultured Penaeus monodon affected by loose shell syndrome. Isr. J. Aquac.-Bamidgeh. 60, 46–56 (2008). [Google Scholar]
- M.S. Rahman, M.M.E. Eshik, N.J. Punom, M.M. Abedin, M.K. Begum. Diversity of Vibrio species and their antibiotic resistance patterns in black tiger shrimp Penaeus monodon Fabricius, 1798 cultured in south-west region of Bangladesh. Asian Fish. Sci. 33, 330–340 (2020). 10.33997/j.afs.2020.33.4.004 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.