Open Access
Issue |
BIO Web Conf.
Volume 141, 2024
IX International Scientific Conference on Agricultural Science 2024 “Current State, Problems and Prospects for the Development of Agricultural Science” (AGRICULTURAL SCIENCE 2024)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 7 | |
Section | Plant Genetics and Breeding | |
DOI | https://doi.org/10.1051/bioconf/202414101025 | |
Published online | 21 November 2024 |
- MordorIntelligence, IR Camera Market Size & Share Analysis - Growth Trends & Forecasts (2024 – 2029). URL: https://www.mordorintelligence.com/industry- reports/ir-camera-market. [Google Scholar]
- L. Budach, et al, The Effects of Data Quality on Machine Learning Performance. [Online]. Available at: https://arxiv.org/abs/2207.14529 (2022) [Google Scholar]
- O. Zendel, M. Murschitz, M. Humenberger, and W. Herzner, How Good Is My Test Data? Introducing Safety Analysis for Computer Vision, International Journal of Computer Vision, 125. doi: 10.1007/s11263-017-1020-z (2017) [Google Scholar]
- N. Bustos, M. Mashhadi, S. K. Lai-Yuen, S. Sarkar, and T. K. Das, A systematic literature review on object detection using near infrared and thermal images, Neurocomputing, 560. doi: 10.1016/j.neucom.2023.126804 (2023) [CrossRef] [Google Scholar]
- A. Banuls, A. Mandow, R. Vazquez-Martin, J. Morales, and A. Garcia-Cerezo, Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes, In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2020. doi:10.1109/SSRR50563.2020.9292593 (2020) [Google Scholar]
- F. Munir, et al, Exploring thermal images for object detection in underexposure regions for autonomous driving, Applied Soft Computing, 121. doi: 10.1016/j.asoc.2022.108793 (2022) [CrossRef] [Google Scholar]
- S. C. Hespeler, H. Nemati, and E. Dehghan-Niri, Non-destructive thermal imaging for object detection via advanced deep learning for robotic inspection and harvesting of chili peppers, Artificial Intelligence in Agriculture, 5. doi: 10.1016/j.aiia.2021.05.003 (2021) [Google Scholar]
- R. Gade, and T. B. Moeslund, Thermal cameras and applications: a survey, Machine Vision and Applications, 25, pp.245-262. doi: 10.1007/s00138-013-0570-5 (2014) [Google Scholar]
- A. Berg, J. Ahlberg, and M. Felsberg, A Thermal Object Tracking Benchmark, In 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1-6. doi: 10.1109/AVSS.2015.7301772 (2015) [Google Scholar]
- C. Herrmann, M. Ruf, and J. Beyerer, CNN-based thermal infrared person detection by domain adaptation, Proc. SPIE 10643, Automatic Target Recognition XXVIII, no. 1064308. doi: 10.1117/12.2304400 (2018) [Google Scholar]
- J. Terven, D. M. Cordova-Esparza, and J. A. Romero-Gonzalez, A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS, Machine Learning and Knowledge Extraction, 5. doi: 10.3390/make5040083 (2023) [Google Scholar]
- T. Diwan, G. Anirudh, and J. Tembhurne, Object detection using YOLO: challenges, architectural successors, datasets and applications, Multimedia Tools and Applications 82. doi: 10.1016/j.aiia.2021.05.003 (2023) [Google Scholar]
- V. V. Kugurakova, et al, Generation of Three-Dimensional Synthetic Datasets, Russian Digital Libraries Journal, 24, no. 4. doi: 10.26907/1562-5419-2021-24-4-622-652 (2021) [CrossRef] [Google Scholar]
- Sensation TI, FLIR_IR_Expansion. [Online]. Available: https://github.com/sensationTI/FLIR_IR_Expansion/commits/master/ (2020) [Google Scholar]
- D. Gabdullina, E. Zykov, and V. Kugurakova, Using OpenCV for real-time image recognition through augmented reality devices, In Proceedings of International Conference on Artificial Life and Robotics. doi: 10.5954/icarob.2023.gs2-4 (2023) [Google Scholar]
- V. V. Kugurakova, et al, VR-Telecontrol of Multi-Arm Devices: Problems, Hypotheses, Problem Statement, Russian Digital Libraries Journal, 25, no.5. doi: 10.26907/1562- 5419-2022-25-5-441-471 (2022). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.