Open Access
Issue |
BIO Web Conf.
Volume 141, 2024
IX International Scientific Conference on Agricultural Science 2024 “Current State, Problems and Prospects for the Development of Agricultural Science” (AGRICULTURAL SCIENCE 2024)
|
|
---|---|---|
Article Number | 02025 | |
Number of page(s) | 12 | |
Section | Soil Biology and Biotechnology | |
DOI | https://doi.org/10.1051/bioconf/202414102025 | |
Published online | 21 November 2024 |
- Rodríguez-Robles, J., Martin A., Martin S., Ruipérez-Valiente J.A., Castro M.: Sustainability. 12(15), 5913 (2020). https://doi.org/10.3390/su12155913 [CrossRef] [Google Scholar]
- Singh, R.K., Berkvens, R., Weyn, M.: AgriFusion: IEEE Access. 9, 136253-136283 (2021). Doi: 10.1109/ACCESS.2021.3116814. [CrossRef] [Google Scholar]
- Adli, H.K., Remli, M.A., Wan Salihin Wong, K.N.S., Ismail, N.A., González-Briones, A., Corchado, J.M., Mohamad, M.S.:. Sensors. 23(7), 3752 (2023). https://doi.org/10.3390/s23073752 [Google Scholar]
- Savin, I.Yu., Blokhin, Yu.I.:Dokuchaev Soil Bulletin.110, 22-50 (2022) https://doi.org/10.19047/0136-1694-2022-110-22-50 [CrossRef] [Google Scholar]
- Briciu-Burghina, C., Zhou, J., Ali, M.I., Regan, F.: Demonstrating the potential of a low-cost soil moisture sensor network. Sensors. 22(3), 987 (2022). https://doi.org/10.3390/s22030987 [Google Scholar]
- Blokhin, Yu.I., Belov, A.V., Blokhina, S.Yu.: Wireless hybrid network with Internet of Things (IoT) support for monitoring agricultural crops. In: Int. Conf. Biologization of land use: soil, technology, products. Moscow, 2023. pp. 328-333. [Google Scholar]
- Prodanovi´c, R., Sarang, S., Ranˇci´c, D., Vuli´c, I., Stojanovi´c, G.M., Stankovski, S., Ostoji´c, G., Baranovski, I., Maksovi´c, D.: Trustworthy wireless sensor networks for monitoring humidity and moisture environments. Sensors. 21, 3636 (2021). https://doi.org/10.3390/s21113636 [CrossRef] [Google Scholar]
- Dasgupta, I., Saha, J., Venkatasubbu, P., Ramasubramanian, P.: AI crop predictor and weed detector using wireless technologies: a smart application for farmers. Arab. J. Sci. Eng. 45 (12), 11115–11127 (2020). https://doi.org/10.1007/s13369-020-04928-2. [CrossRef] [Google Scholar]
- Karimi, N., Arabhosseini, A., Karimi, M., Kianmehr, M.H.: Web-based monitoring system using Wireless Sensor Networks for traditional vineyards and grape drying buildings. Comput. Electron. Agric. 144, 269–283 (2018). https://doi.org/10.1016/j.compag.2017.12.018 [CrossRef] [Google Scholar]
- Kuo, Y.W.; Li, C.L.; Jhang, J.H.; Lin, S.: Design of a wireless sensor network-based IoT platform for wide area and heterogeneous applications. IEEE Sens. J. 18(12), 5187–5197 (2018). DOI:10.1109/JSEN.2018.2832664 [CrossRef] [Google Scholar]
- Li, C., Chen, D., Xie, C., Tang, Y.: Algorithm for wireless sensor networks in ginseng field in precision agriculture. PLoS ONE. 17(2), e0263401 (2022). [CrossRef] [Google Scholar]
- Kuo, Y.-W., Wen, W.-L., Hu, X.-F., Shen, Y.-T., Miao, S.-Y.: A LoRa-based multisensor IoT platform for agriculture monitoring and submersible pump control in a Water Bamboo field. Processes. 9, 813 (2021). https://doi.org/10.3390/pr9050813 [CrossRef] [Google Scholar]
- Jawad, H.M., Nordin, R., Gharghan, S.K., Jawad, A.M., Ismail, M.: Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors. 17(8),1781 (2017). [CrossRef] [Google Scholar]
- Morais, R., Mendes, J., Silva, R., Silva, N., Sousa, J., Peres, E.: A Versatile, low-power and low-cost IoT device for field data gathering in precision agriculture practices. Agriculture. 11(7), 619 (2021). https://doi.org/10.3390/agriculture11070619 [CrossRef] [Google Scholar]
- García, L., Parra, L., Jimenez, J.M., Parra, M., Lloret, J., Mauri, P.V., Lorenz, P.: Deployment strategies of soil monitoring WSN for precision agriculture irrigation scheduling in rural areas. Sensors. 21 (5), 1–30 (2021). https://doi.org/10.3390/s21051693. [Google Scholar]
- Khan, R., Zakarya, M., Balasubramanian, V., Jan, M.A., Menon, V.G.: Smart sens-ing- enabled decision support system for water scheduling in orange orchard. IEEE Sens. J. 21 (16), 17492–17499 (2021). https://doi.org/10.1109/JSEN.2020.3012511. [Google Scholar]
- Roy, S.K., Misra, S., Raghuwanshi, N.S., Das, S.K.: AgriSens: IoT-based dynamic ir- rigation scheduling system for water management of irrigated crops. IEEE Internet Things J. 8 (6), 5023–5030 (2021). https://doi.org/10.1109/JIOT.2020.3036126. [CrossRef] [Google Scholar]
- López E., Vionnet C., Ferrer-Cid, P., Barcelo-Ordinas, J.M., Garcia-Vidal, J., Contini, G., Prodolliet, J., Maiztegui, J.: A low-power IoT device for measuring water table levels and soil moisture to ease increased crop yields. Sensors. 22(18), 6840 (2022). https://doi.org/10.3390/s22186840 [Google Scholar]
- Zeng, Z., Zeng, F., Han, X., Elkhouchlaa, H., Yu, Q., Lü, E.: Real-time monitoring of environmental parameters in a commercial gestating sow house using a ZigBee-based wireless sensor network. Appl. Sci. (Switzerland) 11 (3), 1–17 (2021). https://doi.org/ 10.3390/app11030972. [Google Scholar]
- Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., Aggoune, E.-H.M.: Internet-of- things (IoT)-based smart agriculture: toward making the fields talk. IEEE Access. 7, 129551–129583 (2019). Doi:10.1109/ACCESS.2019.2932609. [CrossRef] [Google Scholar]
- Placidi, P., Morbidelli, R., Fortunati, D., Papini, N., Gobbi, F., Scorzoni, A.: Monitoring soil and ambient parameters in the IoT precision agriculture scenario: an original modeling approach dedicated to low-cost soil water content sensors. Sensors. 21(15), 5110 (2021). https://doi.org/ 10.3390/s21155110 [CrossRef] [Google Scholar]
- Catini, A., Papale, L., Capuano, R., Pasqualetti, V., Di Giuseppe, D., Brizzolara, S., Tonutti, P., Di Natale, C.: Development of a sensor node for remote monitoring of plants. Sensors (Switzerland). 19 (22), 4865 (2019). https://doi.org/10.3390/s19224865. [CrossRef] [Google Scholar]
- Al-Turjman, F.: The road towards plant phenotyping via WSNs: an overview. Comput. Electron. Agric. 161, 4–13 (2019). https://doi.org/10.1016/j. com-pag.2018.09.018. [CrossRef] [Google Scholar]
- Borrero, J.D., Zabalo, A.: An autonomous wireless device for real-time monitoring of water needs. Sensors. 20, 2078 (2020). https://doi.org/10.3390/s20072078 [CrossRef] [Google Scholar]
- Chamara, N., Islam, Md D., Bai, G. (F.), Shi, Y., Ge, Y.: Ag-IoT for crop and environment monitoring: past, present, and future. Agricultural Systems. 203. 103497 (2022). https://doi.org/10.1016/j.agsy.2022.103492 [CrossRef] [Google Scholar]
- Blokhin, Yu.I., Yakushev, V.V., Blokhina, S.Yu., Petrushin, A.F., Mitrofanova O.A., Mitrofanov E.P., Dvirnik A.V.: New solutions for the reference data formation to improve the accuracy of the agrophysical soil properties determination from satellite data. Current problems in remote sensing of the earth from space. 17(4), 164–178 (2020) DOI: 10.21046/2070-7401-2020-17-4-164-178 [Google Scholar]
- Savin, I.Yu., Blokhin, Yu.I., Chinilin, A.V.: Methodology of operational monitoring of crop status based on the Internet of Things technologies. Russian Agricultural Sciences. 6, 43-46 (2023) DOI:10.31857/S2500262723060091 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.