Open Access
Issue |
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 8 | |
Section | Agricultural Economic Engineering and Market Management | |
DOI | https://doi.org/10.1051/bioconf/202414201005 | |
Published online | 21 November 2024 |
- Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901. [Google Scholar]
- Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018. [Google Scholar]
- Gao L, Ma X, Lin J, et al. Precise zero-shot dense retrieval without relevance labels[J]. arXiv preprint arXiv:2212.10496, 2022. [Google Scholar]
- Guu K, Lee K, Tung Z, et al. Retrieval augmented language model pre-training[C]//International conference on machine learning. PMLR, 2020: 3929-3938. [Google Scholar]
- Huang L, Bras R L, Bhagavatula C, et al. Cosmos QA: Machine reading comprehension with contextual commonsense reasoning[J]. arXiv preprint arXiv:1909.00277, 2019. [Google Scholar]
- Huang Y, Liu J, Lv C. Chains-BERT: A High-Performance Semi-Supervised and Contrastive Learning-Based Automatic Question-and-Answering Model for Agricultural Scenarios[J]. Applied Sciences, 2023, 13(5): 2924. [CrossRef] [Google Scholar]
- Liu P, Yuan W, Fu J, et al. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35. [CrossRef] [Google Scholar]
- Liu W, Zhou P, Zhao Z, et al. K-bert: Enabling language representation with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(03): 2901-2908. [CrossRef] [Google Scholar]
- Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical report[J]. arXiv preprint arXiv: 2303.08774, 2023. [Google Scholar]
- Ram O, Levine Y, Dalmedigos I, et al. In-context retrieval-augmented language models[J]. Transactions of the Association for Computational Linguistics, 2023, 11: 1316-1331. [CrossRef] [Google Scholar]
- Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30. [Google Scholar]
- Vu T, Lester B, Constant N, et al. Spot: Better frozen model adaptation through soft prompt transfer[J]. arXiv preprint arXiv:2110.07904, 2021. [Google Scholar]
- Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in neural information processing systems, 2022, 35: 24824-24837. [Google Scholar]
- Zhao W X, Zhou K, Li J, et al. A survey of large language models[J]. arXiv preprint arXiv:2303.18223, 2023. [Google Scholar]
- Zhou Y, Muresanu A I, Han Z, et al. Large language models are human-level prompt engineers[J]. arXiv preprint arXiv:2211.01910, 2022. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.