Open Access
Issue
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
Article Number 01010
Number of page(s) 9
Section Agricultural Economic Engineering and Market Management
DOI https://doi.org/10.1051/bioconf/202414201010
Published online 21 November 2024
  • Kikstra, J.S., et al., The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geoscientific Model Development, 2022. 15(24): p. 9075-9109. [CrossRef] [Google Scholar]
  • Huang, J., et al., An overview of arid and semi-arid climate change. Adv. Climate Change Res, 2013. 9: p. 9-14. [Google Scholar]
  • Kumar, D., et al., Predicting the current and future suitable habitat distribution of the medicinal tree Oroxylum indicum (L.) Kurz in India. Journal of Applied Research on Medicinal and Aromatic Plants, 2021. 23: p. 100309. [CrossRef] [Google Scholar]
  • Forister, M.L., et al., Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proceedings of the National Academy of Sciences, 2010. 107(5): p. 2088-2092. [CrossRef] [PubMed] [Google Scholar]
  • Kiat, Y., et al., Feather moult and bird appearance are correlated with global warming over the last 200 years. Nat. Commun. 10 (1): 1-7. 2019. [NASA ADS] [CrossRef] [Google Scholar]
  • Sun, R., et al., A Study on the Suitable Areas for Growing Apricot Kernels in China Based on the MaxEnt Model. Sustainability, 2023. 15(12): p. 9635. [CrossRef] [Google Scholar]
  • Chiang, H., On the eco-geographical characters and the problems of classification of the wild fruit-tree forest in the Yili Valley of Sinkiang. 1973. [Google Scholar]
  • Zhebentyayeva, T., et al., Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics, 2003. 106: p. 435-444. [CrossRef] [PubMed] [Google Scholar]
  • Linghu, W., et al., The Effects of Globose Scale (Sphaerolecanium prunastri) Infestation on the Growth of Wild Apricot (Prunus armeniaca) Trees. Forests, 2023. 14(10): p. 2032. [CrossRef] [Google Scholar]
  • Liu, W., et al., Interspecific hybridization of Prunus persica with P. armeniaca and P. salicina using embryo rescue. Plant cell, tissue and organ culture, 2007. 88: p. 289-299. [CrossRef] [Google Scholar]
  • Li, W., et al., Genetic diversity, population structure, and relationships of apricot (Prunus) based on restriction site-associated DNA sequencing. Horticulture Research, 2020. 7:p. 1-13. [CrossRef] [PubMed] [Google Scholar]
  • Viti, R., et al., Morphological structure of the stigma and style of several genotypes of Prunus armeniaca L. Plant Biosystems, 2000. 134(1): p. 45-51. [CrossRef] [Google Scholar]
  • Malik, S., et al., Cryopreservation of seeds and embryonic axes of wild apricot (Prunus armeniaca L.). Seed Science and Technology, 2010. 38(1): p. 231-235. [CrossRef] [Google Scholar]
  • Li, M., et al., Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Yili Valley as revealed by ISSR markers. Genetic resources and crop evolution, 2013. 60: p. 2293-2302. [CrossRef] [Google Scholar]
  • Al-Khalaf, A.A., Modeling the potential distribution of the predator of honey bees, Palarus latifrons, in the Arabian deserts using Maxent and GIS. Saudi Journal of Biological Sciences, 2021. 28(10): p. 5667-5673. [CrossRef] [PubMed] [Google Scholar]
  • Wei, Q., et al., Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecological Indicators, 2022. 145: p. 109632. [CrossRef] [Google Scholar]
  • Peng, C., et al., Spatial Heterogeneity of Combined Factors Affecting Vegetation Greenness Change in the Yangtze River Economic Belt from 2000 to 2020. Remote Sensing, 2023. 15(24): p. 5693. [CrossRef] [Google Scholar]
  • Qin, J.-z., et al., Construction of ecological network in Qujing city based on MSPA and MCR models. Scientific Reports, 2024. 14(1): p. 9800. [CrossRef] [Google Scholar]
  • Norberg, A., et al., A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019. 89(3): p. e01370. [CrossRef] [Google Scholar]
  • Hijmans, R.J., et al., Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2005. 25(15): p. 1965-1978. [Google Scholar]
  • Wu, T., et al., The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 2019. 12(4): p. 1573-1600. [CrossRef] [Google Scholar]
  • O’Neill, B.C., et al., A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic change, 2014. 122: p. 387-400. [CrossRef] [Google Scholar]
  • Hu, J., et al., Unveiling the conservation biogeography of a data-deficient endangered bird species under climate change. PLoS One, 2014. 9(1): p. e84529. [CrossRef] [Google Scholar]
  • Li, J., et al., Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Science of the Total Environment, 2020. 698: p. 134141. [CrossRef] [Google Scholar]
  • Zhang, H., et al., Adaptive Distribution and Vulnerability Assessment of Endangered Maple Species on the Tibetan Plateau. Forests, 2024. 15(3): p. 491. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.