Open Access
Issue
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
Article Number 01013
Number of page(s) 8
Section Agricultural Economic Engineering and Market Management
DOI https://doi.org/10.1051/bioconf/202414201013
Published online 21 November 2024
  • FSIN, WFP. 2019 Global Report on Food Crises. GRFC 2019. [Google Scholar]
  • FSIN, WFP. FSIN and Global Network Against Food Crises. 2023. GRFC 2023 Rome. [Google Scholar]
  • P. Goswami, S. Yadav, J. Mathur. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci Today. 2019, 6, pp. 232-42. [CrossRef] [Google Scholar]
  • Qi-gui LI. Application of nanomaterials and nanotechnology in agriculture. Hubei Nongjihua. 2020, 15, pp. 46-7. (in Chinese) [Google Scholar]
  • Xin CHEN, Hai-ming LIN. Aubergine new material will play an important role in modern eco-agriculture. Gansu Agriculture. 2019, 8, pp. 95-98. (in Chinese) [Google Scholar]
  • M. Usman, M. Farooq, A. Wakeel, A. Nawaz, S. A. Cheema, H. U. Rehman, I. Ashraf, M. Sanaullah. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci Total Environ. 2020, 721, p. 137778. [CrossRef] [Google Scholar]
  • Chang-jiao SUN, Hai-xin CUI, Yan WANG, Zhang-hua ZENG, Xiang ZHAO, Bo CUI. Studies on applications of nanomaterial and nanotechnology in agriculture. Journal of Agricultural Science and Technology, 2016, 18(1), pp. 18-25. (in Chinese) [Google Scholar]
  • K. Lamsal, S. W. Kim, J. H. Jung, Y. S. Kim, K. S. Kim, Y. S. Lee. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology. 2011 Mar, 39(1), pp. 26-32. [Google Scholar]
  • S. Arora, P. Sharma, S. Kumar, R. Nayan, P. K. Khanna, M. G. H. Zaidi. Gold-nanoparticles induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66(3), pp. 303-10. [CrossRef] [Google Scholar]
  • Pei-zhu WU. Study on n-Hap as a model of targeted drug delivery system. Jinan University. 2004. (in Chinese) [Google Scholar]
  • S. Mathew, C. P. Victório. Carbon nanotubes applications in agriculture. 2022. (in: J. Abraham, S. Thomas, N. Kalarikkal. Handbook of carbon nanotubes. Springer Cham.) [Google Scholar]
  • S. Mishra, B. R. Singh, A. Singh, C. Keswani, A. H. Naqvi, H. B. Singh. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE. 2014 May 19, 9(5), e97881. [CrossRef] [PubMed] [Google Scholar]
  • T. K. Barik, B. Sahu, V. Swain. Nanosilica-from medicine to pest control. Parasitol Res. 2008 Jul, 103(2), pp. 253-8. [Google Scholar]
  • H. J. Park, S. H. Kim, H. J. Kim, C. Seong. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J. 2006, 22(3), pp. 295–302. [CrossRef] [Google Scholar]
  • An-qi WANG, Yan WANG, Chun-xin WANG, Bo CUI, Chang-jiao SUN, Xiang ZHAO, Zhang-hua ZENG, Jun-wei YAO, Guo-qiang LIU, Hai-xin CUI. Research progress on nanocapsules formulations of pesticides. Journal of Agricultural Science and Technology. 2018, 20(2), pp. 10-8. (in Chinese) [Google Scholar]
  • Dong-qing Cai, Long-hai Wang, Gui-long Zhang, Xin Zhang, Zheng-yan Wu. Controlling pesticide loss by natural porous micro/nano composites: Straw ash-based biochar and biosilica. ACS Appl Mater Interfaces. 2013 Sep 25, 5(18), pp. 9212-6. [CrossRef] [PubMed] [Google Scholar]
  • Jin Xu, Wen-xiu Zhao, Ya-wei Ning, M. Bashari, Feng-feng Wu, Hai-ying Chen, Na Yang, Zheng-yu Jin, Bao-cai Xu, Li-xia Zhang, Xue-ming Xu. Improved stability and controlled release of ω3/ω6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydr Polym. 2013 Feb 15, 92(2), pp. 1633-40. [CrossRef] [Google Scholar]
  • D. Kanjana. Advancement of nanotechnology applications on plant nutrients management and soil improvement. 2017. (in: R. Prasad, V. Kumar, M. Kumar. Nanotechnology. Springer Singapore.) [CrossRef] [Google Scholar]
  • Fei Wang. Effects of nanocarbon on nitrogen uptake, accumulation and yield of maize under different nitrogen levels. Northeast Agricultural University. 2016. (in Chinese) [Google Scholar]
  • Xiao-yan WANG, Guo-hui MA, Hao DI, Xiao-hai TIAN, Yi WANG. Effects of NMUrea on rice yield and agronomic nitrogen efficiency. Plant Nutrition and Fertilizing Science. 2010, 16(6), pp. 1479-85. (in Chinese) [Google Scholar]
  • Mei-yan WU, Ruo-chao HAO, Xiao-hai TIAN, Xiao-ling WANG, Guo-hui MA, Hai-tao TANG. Effects of adding nano-carbon in slow-released fertilizer on grain yield and nitrogen use efficiency of super hybrid rice. Hybrid Rice. 2010, 25(4), pp. 86-90. (in Chinese) [Google Scholar]
  • Shu-min LI, Xiao-guang HAN, Ai-yuan ZHANG, Fei WANG, De-jiang WANG, Cheng-yu ZHENG, Tong-tong LIU. Effect of different urea added nano-carbon synergist on dry matter accumulation and yield of soybean. Journal of Northeast Agricultural University. 2015, 46(4), pp. 10-6. (in Chinese) [Google Scholar]
  • Zhao-wen Xue. Experimental application of nanocarbon fertilizer synergist on autumn potatoes. Agricultural Science and Technology Newsletter. 2015, 9, pp.104-6. (in Chinese) [Google Scholar]
  • Jian LIU, Yang-de ZHANG, Zhi-ming ZHANG. The application research of nano-biotechnology to promote increasing of vegetable production. Hubei Agricultural Sciences. 2009, 48(1), pp. 123-7. (in Chinese) [Google Scholar]
  • Yuan-zhen LIANG, Zhong-kun ZHU, Zhi-lei FAN, Jing-li GUO, Li-xin WANG, Meng-jun ZHANG. Effects of nano carbon added to nitrate sulfur based compound fertilizer on growth and nitrogen, phosphorus and potassium content of Brassica chinensis L.. Fertilizer & Health. 2022, 49(1), pp. 38-42. (in Chinese) [Google Scholar]
  • Yu-jie WANG, Ri-yuan CHEN, Hou-cheng LIU, Shi-wei SONG, Guang-wen SUN. Applications of nanomaterials in agriculture and its effects on the growth and development of plants. Plant Physiology Journal. 2017, 53(6), pp. 933–42. (in Chinese) [Google Scholar]
  • Ling-jie Rong. Green synthesis of nano-sized molybdenum oxide particles and its effect on yield and quality of pakchoi. Huazhong Agricultural University. 2022 Aug. (in Chinese) [Google Scholar]
  • A. T. Florence, A. M. Hillery, N. Hussain, P. U. Jani. Factors affecting the oral uptake and translocation of polystyrene nanoparticles: Histological and analytical evidence. J Drug Target. 1995, 3(1), 65-70. [CrossRef] [PubMed] [Google Scholar]
  • F. Delie. Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev. 1998 Dec 1, 34(2-3), pp. 221-33. [CrossRef] [Google Scholar]
  • P. U. Jani, D. E. McCarthy, A. T. Florence. Nanospheres and microsphere uptake via Peyer’s patches: Observation of the rate of uptake in the rat after a single oral dose. Int J Pharm. 1992, 86(2-3), pp. 239-46. [CrossRef] [Google Scholar]
  • Shao-li Ji, R. Calonge, A. Castillo. Comparison of the effectiveness of two zinc sources in the prevention of piglet diarrhea. Animal Science Abroad – Pigs and Poultry. 2013, 33(8), pp. 6-8. (in Chinese) [Google Scholar]
  • Jian-bo Ren, Zhong-hong Hu, Hong-bo Zhao, Guang-fei Ying. Effect of different form zinc oxide on the growth performance and diarrhea in the early-weaned piglets. China Animal Husbandry & Veterinary Medicine. 2013, 40(6), pp. 125-8. (in Chinese) [Google Scholar]
  • Zhi-min SU. Effects of zinc oxide and nano zinc oxide on growth performance and zinc utilization of weaned piglets. China Feed. 2023, 4, pp. 41-4. (in Chinese) [Google Scholar]
  • P. S. Swain, S. B. N. Rao, D. Rajendran, P. Krishnamoorthy, S. Mondal, D. Pal, S. Selvaraju. Nano zinc supplementation in goat (Capra hircus) ration improves immunity, serum zinc profile and IGF‐1 hormones without affecting thyroid hormones. J Anim Physiol Anim Nutr. 2021 Jul, 105(4), pp. 621-9. [CrossRef] [PubMed] [Google Scholar]
  • N. Kumar, R. P. Verma, L. P. Singh, V. P. Varshney, R.S. Dass. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus × Bos taurus) bulls. Reprod Nutr Dev. 2006, 46(6), pp. 663-75. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • S. Gangadoo, D. Stanley, R. J. Hughes, R. J. Moore, J. Chapman. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci Technol. 2016, 58, pp. 115-26. [CrossRef] [Google Scholar]
  • K. T. Suzuki, Y. Ogra. Metabolic pathway for selenium in the body: Speciation by HPLC-ICP MS with enriched Se. Food Addit Contam. 2002 Oct, 19(10), pp. 974-83. [Google Scholar]
  • S. Gangadoo, I. Dinev, N. L. Willson, R. J. Moore, J. Chapman, D. Stanley. Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ Sci Pollut Res Int. 2020 May, 27(14), pp. 16159-166. [CrossRef] [PubMed] [Google Scholar]
  • A. Nouri. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens. Br Poult Sci. 2019 Oct, 60(5), pp. 530-8. [Google Scholar]
  • Ying-hua SHI, Cheng-zhang WANG, Zi-rong XU. The application and prospect of nanotechnology in animal husbandry. Jour. of Northwest Sci-Tech Univ. of Agri. and For. (Nat. Sci. Ed.). 2006 Aug, 34(8), pp. 49-52. (in Chinese) [Google Scholar]
  • A. P. Ingle, N. Duran, M. Rai. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol Biotechnol. 2014 Feb, 98(3), pp. 1001-9. [Google Scholar]
  • M. Rai, S. D. Deshmukh, A. P. Ingle, I. R. Gupta, M. Galdiero, S. Galdiero. Metal nanoparticles: The protective nanoshield against virus infection. Crit Rev Microbiol. 2016, 42(1), pp. 46-56. [CrossRef] [PubMed] [Google Scholar]
  • S. Park, H. H. Park, S. Y. Kim, S. J. Kim, K. Woo, G. Ko. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl Environ Microbiol. 2014 Apr, 80(8), pp. 2343-50. [CrossRef] [PubMed] [Google Scholar]
  • S. Akhtar, K. Shahzad, S. Mushtaq, I. Ali, M. H. Rafe, S. M. Fazal-ul-karim. Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications. Materials Research Express. 2019, 6(10), p. 105409. [CrossRef] [Google Scholar]
  • D. Botequim, J. Maia, M. M. F. Lino, L. M. F. Lopes, P. N. Simões, L. M. Ilharco, L. Ferreira. Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir. 2012 May 22, 28(20), pp. 7646-56. [Google Scholar]
  • Tong Guo. Adsorption and bactericidal mechanism of copper-loaded silicate nanoparticles on intestinal pathogenic bacteria in weaned piglets. Zhejiang University. 2004. (in Chinese) [Google Scholar]
  • Yu-long Ma. Characterization of copper-loaded silicate nanoparticles and the mechanism of their application effect on broiler chickens. Zhejiang University. 2004. (in Chinese) [Google Scholar]
  • M. R. Mcdermott, J. Bienenstock. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol. 1979 May, 122(5), pp. 1892-8. [Google Scholar]
  • F. Stieneker, J. Kreuter, J. Löwer. High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines. AIDS. 1991 Apr, 5(4), pp. 431-5. [Google Scholar]
  • N. Kossovsky, A. Gelman, H. J. Hnatyszyn, E. Sponsler, G. M. Chow. Conformationally stabilizing self-assembling nanostructured delivery vehicles for biochemically reactive pairs. Nanostructured Mater. 1995, 5(2), pp. 233-47. [CrossRef] [Google Scholar]
  • Jian-ying CHEN. Essentials of plant protection technology for green agriculture. Hubei Nongjihua. 2020, 15, pp. 47-8. [Google Scholar]
  • S.Otles, B. Yalçın. Nano-biosensors as new tool for detection of food quality and safety. LogForum. 2010, 6(4), pp. 67-70. [Google Scholar]
  • R. Prasad, A. Bhattacharyya, Q. D. Nguyen. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol. 2017 Jun, 20(8), p. 1014. [Google Scholar]
  • R. P. Singh. Application of nanomaterials toward development of nanobiosensors and their utility in agriculture. 2017. (in: R. Prasad, M. Kumar, V. Kumar. Nanotechnology. Springer Singapore.) [CrossRef] [Google Scholar]
  • De-hong YANG, Lei-lei ZHANG, Cheng ZHU. Application of SERS technology in the detection of harmful chemical residues in agricultural products. Spectroscopy and Spectral Analysis. 2020 Oct, 40(10), pp. 3048-55. (in Chinese) [Google Scholar]
  • Heng-ye CHEN, Qiong SHI, Hai-yan FU, Ou HU, Yao FAN, Lu XU, Lei ZHANG, Wei LAN, Dong-lei SUN, Tian-ming YANG, Yuan-bin SHE. Rapid detection of five pesticide residues using complexes of gold nanoparticle and porphyrin combined with ultraviolet visible spectrum. J Sci Food Agric. 2020 Sep, 100(12), pp. 4464-73. [CrossRef] [PubMed] [Google Scholar]
  • P. Goswami, S. Yadav, J. Mathur. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today. 2019, 6(2), pp. 232-242. [CrossRef] [Google Scholar]
  • C. Krishnaraj, R. Ramachandran, K. Mohan, P. T. Kalaichelvan. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2012 Jul, 93, pp. 95-9. [CrossRef] [Google Scholar]
  • N. K. Fageria, V. C. Baligar, R. J. Wright. Iron nutrition of plants: An overview on the chemistry and physiology of its deficiency and toxicity. Pesq. Agropec. Bras. 1990, 25(4), pp. 553-70. [Google Scholar]
  • P. C. Ray, Hong-tao YU, P. P. Fu. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009 Jan, 27(1), pp. 1-35. [Google Scholar]
  • C. D. Foy, A. L. Fleming. Aluminum tolerances of two wheat genotypes related to nitrate reductase activities. J. Plant Nutr. 1982, 5(11), pp. 1313-33. [CrossRef] [Google Scholar]
  • Ling YANG, D. J. Watts. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005 Aug 14, 158(2), pp. 122-32. [Google Scholar]
  • Liang-hao DING, J. Stilwell, Ting-ting ZHANG, O. Elboudwarej, Hui-jian JIANG, J. P. Selegue, P. A. Cooke, J. W. Gray, Fan-qing F. Chen. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 2005 Dec, 5(12), pp. 2448-64. [Google Scholar]
  • M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006 Jan 5, 160(2), pp. 121-6. [Google Scholar]
  • V. M. Silva, N. Corson, A. Elder, G. Oberdörster. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol Sci. 2005 Jun, 85(2), pp. 983-989. [CrossRef] [PubMed] [Google Scholar]
  • C. W. Lam, J. T. James, R. McCluskey, R. L. Hunter. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004 Jan, 77(1), pp. 126-34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.