Open Access
Issue
BIO Web Conf.
Volume 142, 2024
2024 International Symposium on Agricultural Engineering and Biology (ISAEB 2024)
Article Number 02001
Number of page(s) 6
Section Agricultural Natural Systems and Crop Growth Research
DOI https://doi.org/10.1051/bioconf/202414202001
Published online 21 November 2024
  • Tebaldi, C., Hayhoe, K., Arblaster, J.M., Meehl, G.A. (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climate Change., 79:185–211. [CrossRef] [Google Scholar]
  • Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman, M.J., White, J.W., Reynolds, P.D., Alderman, P.V.V., Prasad, P.K., Aggarwal, J., Anothai, B., Basso, C., Biernath, A.J., Challinor, G., De Sanctis, J., Doltra, E., Fereres, M., Garcia-Vila, S., Gayler, G., Hoogenboom, L.A., Hunt, R.C., Izaurralde, M., Jabloun, C.D., Jones, K.C., Kersebaum, A.K., Koehler, C. Müller, S. Naresh Kumar, C. Nendel, G.O., Leary, J.E., Olesen, T., Palosuo, E., Priesack, E., Eyshi Rezaei, A.C., Ruane, M.A., Semenov, I., Shcherbak, C., Stöckle, P., Stratonovitch, T., Streck, I., Supit, F., Tao, P.J., Thorburn, K., Waha, E., Wang, D., Wallach, J., Wolf, Z., Zhao, M.P., Zhu, Y. (2015) Rising temperatures reduce global wheat production. Nature Climate Change., 5:143–147. [CrossRef] [Google Scholar]
  • Agnolucci, P., Rapti, C., Alexander, P., De Lipsis, V., Holland, R.A., Eigenbrod, F., Ekins, P. (2020) Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food. 1:562–571. [CrossRef] [Google Scholar]
  • Xu, Y., Chu, C., Yao, S. (2021) The impact of high-temperature stress onrice: challenges and solutions. Crop Journal. 9: 963–976 [CrossRef] [Google Scholar]
  • Ahmad, M., Waraich, E.A., Skalicky, M., Hussain, S., Zulfiqar, U., Anjum, M.Z., Habib Ur Rahman, M., Brestic, M., Ratnasekera, D., Lamilla-Tamayo, L., Al-Ashkar, I., El Sabagh, A. (2021) Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: An Overview. Frontiers in Plant Science. 12:767150. [CrossRef] [Google Scholar]
  • Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A. (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One. 8:e66428. [Google Scholar]
  • Zhu, X.G., Long, S.P., Ort, D.R. (2010) Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology. 61:235–261. [CrossRef] [PubMed] [Google Scholar]
  • Ren, B., Liu, W., Zhang, J., Dong, S., Liu, P., Zhao, B. (2010) Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Naturwissenschaften. 104:12–20. [Google Scholar]
  • Luo, N., Meng, Q., Feng, P., Qu, Z., Yu, Y., Liu, L., Müller, C., Wang, P. (2023) China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications. 14:2637. [CrossRef] [Google Scholar]
  • Kirst, H., Gabilly, S.T., Niyogi, K.K., Lemaux, P,G, Melis, A. (2017) Photosynthetic antenna engineering to improve crop yields. Planta. 245: 1009–1020. [CrossRef] [PubMed] [Google Scholar]
  • Taylor, S.H., Long, S.P. (2017) Slow induction of photosynthesis on shade-to-sun transitions in wheat may cost at least 21% of productivity. Philosophical transactions of the royal society B: Biological Sciences. 372:20160543. [CrossRef] [PubMed] [Google Scholar]
  • Wang, Y., Burgess, S. J., De Becker, E.M. (2020) Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity. The Plant Journal. 101:874-884. [CrossRef] [PubMed] [Google Scholar]
  • Kromdijk, J., Glowacka, K., Leonelli, L. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photo protection. Science. 354:857–861. [CrossRef] [PubMed] [Google Scholar]
  • De Souza, A. P., Burgess, S.J., Doran, L. (2022) Soybean photosynthesis and crop yield are improved by accelerating recovery from photo protection. Science. 377:851–854. [CrossRef] [PubMed] [Google Scholar]
  • Yang, N., Xu, X.W., Wang, R.R., Peng, W.L., Cai, L., Song, J.M., Li, W., Luo, X., Niu, L., Wang, Y., Jin, M., Chen, L., Luo, J., Deng, M., Wang, L., Pan, Q., Liu, F., Jackson, D., Yang, X., Chen, L.L., Yan, J. (2017) Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature Communications. 8:1874. [CrossRef] [Google Scholar]
  • Yang, N., Wang, Y., Liu, X., Jin, M., Vallebueno-Estrada, M., Calfee, E., Chen, L., Dilkes, B.P., Gui, S., Fan, X., Harper, T.K., Kennett, D.J., Li, W., Lu, Y., Ding, J., Chen, Z., Luo, J., Mambakkam, S., Menon, M., Snodgrass, S., Veller, C., Wu, S., Wu, S., Zhuo, L., Xiao, Y., Yang, X., Stitzer, M.C., Runcie, D., Yan, J., Ross-Ibarra, J. (2023) Two teosintes made modern maize. Science. 382:eadg8940. [CrossRef] [PubMed] [Google Scholar]
  • Šesták, Z., Václavík, J. (1965). Relationship between chlorophyll content and photosynthetic rate during the vegetation season in maize grown at different constant soil water levels. In: Slavík, B. (eds) Water Stress in Plants. Springer, Dordrecht. 210–218. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.