Open Access
Issue
BIO Web Conf.
Volume 143, 2024
The 5th International Conference on Bioenergy and Environmentally Sustainable Agriculture Technology (ICoN-BEAT 2024)
Article Number 02003
Number of page(s) 8
Section Fishery and Animal Science
DOI https://doi.org/10.1051/bioconf/202414302003
Published online 25 November 2024
  • P. Chakraborty, A. Mallik, N. Sarang, and S. S. Lingam, A review on alternative plant protein sources available for future sustainable aqua feed production, Int. J. Chem. Stud, vol. 7, no. 3, pp. 1399–1404 (2019). [Google Scholar]
  • C. Lim, C.-S. Lee, and C. D. Webster, Alternative protein sources in aquaculture diets. (CRC Press, 2023). [Google Scholar]
  • J. Akbar, Pakan Ikan Berbasis Bahan Baku Gulma Itik Untuk Pembesaran Ikan Papuyu. (Lambung Mangkurat University Press, 2020). [Google Scholar]
  • J. L. Brewbaker and E. M. Hutton. Leucaena: versatile tropical tree legume, in New agricultural crops, pp. 207–259 (CRC Press, 2019). https://doi.org/10.1201/978042905111. [CrossRef] [Google Scholar]
  • Y. Achadri, D. K. Hau, J. Nulik, and P. R. Matitaputty, Growth performance of Bali Cattle with Lamtoro Taramba ( Leucaena leucocephala ) feed in Kupang Regency, Nusa Tenggara Timur Growth performance of Bali Cattle with Lamtoro Taramba ( Leucaena leucocephala ) feed in Kupang Regency, Nusa Tenggara Timur, Sci., vol. 807 (2021). doi: 10.1088/1755-1315/807/3/032041. [Google Scholar]
  • F. Meyllianawaty and K. Haetami, Interventions in Selection of Fish Feed Ingredients with Special Reference to Leaves and Water Plants : A Review, vol. 26, no. 1, pp. 88–95 (2024). doi: 10.9734/AJFAR/2024/v26i1729. [Google Scholar]
  • S. Yasya and E. Fathanah, Impacts of Probiotic and Dietary Lamtoro Leaf Meal on the Growth Performance, Digestibility and Small Intestinal Morphometry of Kampung Chicken, vol. 13, no. 3, pp. 333–339 (2024). doi: 10.47278/journal.ijab/2024.127. [Google Scholar]
  • S. Indarjulianto, A. Nururrozi, and S. Raharjo, Brief Review: The Negative Impact Of Mimosin in L. leucocephala in Ruminant Animals and Processing Methods to Reduce Poisoning Effects on Ruminant Livestock, J. Livest. Sci. Prod (2017). https://doi.org/10.31002/jalspro.v3i2.2037. [Google Scholar]
  • Q. A. Ogunniyi, O.O. Ogbole, O.D. Akin-Ajani, T.O. Ajala, O. Bamidele, J. Fettke, and O.A. Odeku, Medicinal Importance and Phytoconstituents of Underutilized Legumes from the Caesalpinioideae DC Subfamily, vol. 13, no. 15, p. 8972 (2023). https://doi.org/10.3390/app1315897. [Google Scholar]
  • M. Sood, D. Kapoor, V. Kumar, M.S. Sheteiwy, M. Ramakrishnan, M. Landi, F. Araniti, and A. Sharma, Trichoderma: The ‘Secrets’ of a Multitalented Biocontrol Agent, Plants, vol. 9, no. 6 (2020). https://doi.org/10.3390/plants906076. [Google Scholar]
  • K. Yang, Y. Qing, Q. Yu, X. Tang, G. Chen, R. Fang, and H. Liu, By-Product Feeds: Current Understanding and Future Perspectives, Agriculture, vol. 11, no. 3 (2021). https://doi.org/10.3390/agriculture1103020. [Google Scholar]
  • A. Gupte, D. Prajapati, A. Bhatt, S. Pandya, M. Raghunathan, and S. Gupte, Agroindustrial Residues: An Eco-friendly and Inexpensive Substrate for Fungi in the Development of White Biotechnology BT Fungi and Fungal Products in Human Welfare and Biotechnology, T. Satyanarayana and S. K. Deshmukh, Eds. Singapore: Springer Nature Singapore, pp. 571–603 (2023). https://doi.org/10.1007/978-98119-8853-0_1. [Google Scholar]
  • L. Satpathy, D. Dash, P. Sahoo, T. S. Anwar, and S. P. Parida, Quantitation of total protein content in some common edible food sources by lowry protein assay, Lett. Appl. NanoBioScience, vol. 9, no. 3, pp. 1275–1283 (2020). https://doi.org/10.33263/LIANBS93.1275128. [CrossRef] [Google Scholar]
  • AOAC, ’Appendix F: Guidelines for Standard Method Performance Requirements,’ in AOAC Official Methods of Analysis. AOAC International. Washington DC, USA (2019). [Google Scholar]
  • A. Chesson, Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms, J. Sci. Food Agric., vol. 32, no. 8, pp. 745–758 (1981). https://doi.org/10.1002/jsfa.274032080. [CrossRef] [Google Scholar]
  • A. M. W. Mulyono, Rancangan Percobaan. Penerbit Kepel Press (2011). [Google Scholar]
  • C. C. King, C. M. Dschaak, J. Eun, V. Fellner, and A. J. Young, Quantitative analysis of microbial fermentation under normal or high ruminal temperature in continuous cultures, Prof. Anim. Sci., vol. 27, no. 4, pp. 319–327 (2011). doi: 10.15232/S1080-7446(15)30495-2. [CrossRef] [Google Scholar]
  • Y. Hu, G. Pan, M. Zhao, H. Yin, Y. Wang, J. Sun, Z. Yu, C. Bai, and Y. Xue, Suitable fermentation temperature of forage sorghum silage increases greenhouse gas production: Exploring the relationship between temperature, microbial community, and gas production, Sci—total Environ., p. 175325 (2024). doi: 10.1016/j.scitotenv.2024.175325. [Google Scholar]
  • W. Liszkowska and J. Berlowska, Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds, Molecules, vol. 26, no. 4, p. 1035 (2021). doi: 10.3390/molecules26041035. [CrossRef] [PubMed] [Google Scholar]
  • V. Kumar, V. Ahluwalia, S. Saran, J. Kumar, A. K. Patel, and R. R. Singhania, Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions, Bioresour. Technol., vol. 323, p. 124566 (2021). doi: 10.1016/j.biortech.2020.124566. [CrossRef] [Google Scholar]
  • W. Li, L. Zhao, and X. He, Degradation potential of different lignocellulosic residues by Trichoderma longibrachiatum and Trichoderma afroharzianum under solid-state fermentation, Process Biochem., vol. 112, pp. 6–17 (2022). doi 10.1016/j.procbio.2021.11.011. [CrossRef] [Google Scholar]
  • R. L. Gautam and R. Naraian, Trichoderma, a factory of multipurpose enzymes: cloning of enzymatic genes, Fungal Biotechnol. Bioeng., pp. 137–162 (2020). doi: 10.1007/978-3-030-41870-0_5. [Google Scholar]
  • O. B. Chukwuma, M. Rafatullah, H. A. Tajarudin, and N. Ismail, A review on bacterial contribution to lignocellulose breakdown into useful bio-products, Int. J. Environ. Res. Public Health, vol. 18, no. 11, p. 6001 (2021). doi: 10.3390/ijerph18116001. [CrossRef] [Google Scholar]
  • L. M. Legodi, D. C. La Grange, and E. L. J. van Rensburg, Production of the cellulase enzyme system by locally isolated Trichoderma and Aspergillus species cultivated on banana pseudostem during solid-state fermentation, fermentation, vol. 9, no. 5, p. 412 (2023). doi: 10.3390/fermentation9050412. [Google Scholar]
  • Q. Yan, M. Lin, Y. Huang, O. Datsomor, K. Wang, and G. Zhao, Effects of solidstate fermentation pretreatment with single or dual culture white rot fungi on white tea residue nutrients and in vitro rumen fermentation parameters, fermentation, vol. 8, no. 10, p. 557 (2022). doi: 10.3390/fermentation8100557. [Google Scholar]
  • C. Holland, P. Ryden, C. H. Edwards, and M. M.-L. Grundy, Plant cell walls: Impact on nutrient bioaccessibility and digestibility, Foods, vol. 9, no. 2, p. 201 (2020). doi: 10.3390/foods9020201. [CrossRef] [PubMed] [Google Scholar]
  • X. Li, Plant cell wall chemistry: Implications for ruminant utilisation, J. Appl. Anim. Nutr., vol. 9, no. 1, pp. 31–56 (2021). doi: 10.3920/JAAN2020.0017. [CrossRef] [Google Scholar]
  • A. Iram, D. Cekmecelioglu, and A. Demirci, Ideal feedstock and fermentation process improvements for the production of lignocellulolytic enzymes, Processes, vol. 9, no. 1, p. 38 (2020). doi: https://dx.doi.org/10.3390/pr9010038. [CrossRef] [Google Scholar]
  • D. E. Cruz-Casas, C. N. Aguilar, J. A. Ascacio-Valdés, R. Rodríguez-Herrera, M. L. Chávez-González, and A. C. Flores-Gallegos, Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides, Food Chem. Mol. Sci., vol. 3, p. 100047 (2021). doi: https://doi.org/10.1016/j.fochms.2021.100047. [CrossRef] [Google Scholar]
  • V. Ravindran, Poultry feed availability and nutrition in developing countries, vol. 2, no. 11. Food and Agriculture Organization of the United Nations Rome, Italy (2013). [Google Scholar]
  • O. Olukomaiya, C. Fernando, R. Mereddy, X. Li, and Y. Sultanbawa, Solid-state fermented plant protein sources in the diets of broiler chickens: A review, Anim. Nutr., vol. 5, no. 4, pp. 319–330 (2019). doi: https://doi.org/10.1016/j.aninu.2019.05.0052405-6545/©. [CrossRef] [Google Scholar]
  • J. Xia, A. He, R. Li, Y. Zhang, J. Xu, X. Liu, and J. Xu, Enzymatic activity and protein expression of cellulase from rice straw produced by Trichoderma reesei in the presence of oxygen vectors, Ind. Crops Prod., vol. 109, pp. 654–660 (2017). doi: http://dx.doi.org/10.1016/j.indcrop.2017.09.017. [CrossRef] [Google Scholar]
  • M. Andlar, T. Rezić, N. Marđetko, D. Kracher, R. Ludwig, and B. Šantek, Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation, Eng. Life Sci., vol. 18, no. 11, pp. 768–778 (2018). doi: https://doi.org/10.1002/elsc.201800039. [CrossRef] [PubMed] [Google Scholar]
  • K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, and M. Kamiński, Pretreatment of lignocellulosic materials as substrates for fermentation processes, Molecules, vol. 23, no. 11, p. 2937 (2018). doi:10.3390/molecules23112937. [CrossRef] [PubMed] [Google Scholar]
  • A. A. Houfani, N. Anders, A. C. Spiess, P. Baldrian, and S. Benallaoua, Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars–a review, Biomass and Bioenergy, vol. 134, p. 105481 (2020). doi: https://doi.org/10.1016/j.biombioe.2020.105481. [CrossRef] [Google Scholar]
  • S. Sharma, D. Kour, K. L. Rana, A. Dhiman, S. Thakur, P. Thakur, S. Thakur, N. Thakur, S. Sudheer, and N. Yadav, Trichoderma: biodiversity, ecological significances, and industrial applications, Recent Adv. white Biotechnol. through fungi vol. 1 Divers. Enzym. Perspect., pp. 85–120 (2019). [Google Scholar]
  • J. R. Gandra, E. R. De Oliveira, R. H. T. B. De Goes, K. M. P. De Oliveira, C. S. Takiya, and T. A. Del Valle, Microbial inoculant and an extract of Trichoderma longibrachiatum with xylanase activity effect on chemical composition, fermentative profile and aerobic stability of guinea grass ( Pancium maximum Jacq .) silage, J. Anim. Feed Sci., no. 26, pp. 339–347 (2017). DOI: https://doi.org/10.22358/jafs/80776/2017. [CrossRef] [Google Scholar]
  • H. R. Flodman and H. Noureddini, Effects of intermittent mechanical mixing on solid-state fermentation of wet corn distillers grain with Trichoderma reesei, Biochem. Eng. J., vol. 81, pp. 24–28 (2013). doi: https://doi.org/10.1016/j.bej.2013.09.011. [CrossRef] [Google Scholar]
  • H. Xu, N. Wu, N. Na, L. Sun, Y. Zhao, H. Ding, Y. Fang, T. Wang, Y. Xue, and J. Zhong, Fermentation weight loss, fermentation quality, and bacterial community of ensiling of sweet sorghum with lactic acid bacteria at different silo densities, Front. Microbiol., vol. 13, p. 1013913 (2022). doi:10.3389/fmicb.2022.1013913. [CrossRef] [Google Scholar]
  • P. Nargotra, V. Sharma, Y.-C. Lee, Y.-H. Tsai, Y.-C. Liu, C.-J. Shieh, M.-L. Tsai, C.-D. Dong, and C.-H. Kuo, Microbial lignocellulolytic enzymes for the effective valorization of lignocellulosic biomass: a review, Catalysts, vol. 13, no. 1, p. 83 (2022). doi: https://doi.org/10.3390/catal13010083. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.