Open Access
Issue |
BIO Web Conf.
Volume 144, 2024
1st International Graduate Conference on Smart Agriculture and Green Renewable Energy (SAGE-Grace 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 8 | |
Section | Smart Agriculture and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/202414401004 | |
Published online | 25 November 2024 |
- D. Susilokarti and L. S., Sigit Supadmo Arif, Sahid Susanto, “Spectral Analysis in Determining the Periodicity of the Bulk Cycle in the Southern Region of Jatiluhur, Subang Regency, West Java,” vol. 36, no. 1, pp. 89–95, 2016. [Google Scholar]
- A. Fadholi, “ Test changes in average air temperature and rainfall in the city of Pangandinang,” 2011. [Google Scholar]
- J. Loebis, “ Flood Plans for Water Structures,” Jakarta: Departemen Pekerjaan Umum, 1992. [Google Scholar]
- D. A. Sofia and N. Nursila, “Analysis of Intensity, Duration and Frequency of Rain Events in the Sukabumi Region,” JTERA (Jurnal Teknol. Rekayasa), vol. 4, no. 1, p. 85, 2019, doi: 10.31544/jtera.v4.i1.2019.85-92. [CrossRef] [Google Scholar]
- Paudel U, “Trends of Temperature and Rainfall in Pokhara,” Prithvi Acad. J., 2020. [Google Scholar]
- M. L. Gurfinkel, Y. I., Ozheredov, V. A., Breus, T. K., & Sasonko, “The effects of space and terrestrial weather factors on human arterial stiffness and endothelial function,” Biophysics (Oxf)., 2018. [Google Scholar]
- G. Leliak, “ Rainfall Prediction in Ambon City Using the Backpropagation Method,” J. Tek. Inform. dan Sist. Inf., 2022. [Google Scholar]
- D. Susilokarti et al., “Comparative Study of Rainfall Prediction Methods of Fast Fourier Transformation (FFT), Autoregressive Integrated Moving Average (Arima) and Artificial Neural Network (ANN),” vol. 35, no. 2, pp. 241–247, 2015. [Google Scholar]
- M. D. U. Putra, G. K. Gandhiadi, and L. P. I. Harini, “Implementasi Backpropagation Neural Network,” vol. 5, no. November, pp. 126–132, 2016. [Google Scholar]
- Y. Chang, J. Lin, J. Shieh, and M. F. Abbod, “Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction,” vol. 2012, 2012, doi: 10.1155/2012/951247. [Google Scholar]
- L. Zhang, Y., Yang, Y., Ma, and C. Jiang, “Identification of multiple raisins by feature fusion combined with NIR spectroscopy,” PLoS One, 2022. [Google Scholar]
- T. N.-I. D Pramita, “Computational of distribution of wind speed as preliminary information for fishers,” J. Adv. Trends Comput. Sci. Eng., 2020. [Google Scholar]
- P. H. and V. N. Gupta A, Gautam A, Jain C, “Time Series Analysis of Forecasting Indian Rainfall,” Int. J. Inven. Eng. Sci., 2013. [Google Scholar]
- M. Khairani, “ Backpropagation Improvisation Using the Application of Adaptive Learning Rate and Parallel Training,” J. Penelit. Tek. Inform., 2014. [Google Scholar]
- M. Mahrup, I. G. M. Kusnartha, S. Sukartono, G. Panthou, and T. Lebel, “Computational based on GUI MATLAB for back propagation method in detecting climate change : case study of mataram city Computational based on GUI MATLAB for back propagation method in detecting climate change : case study of mataram city,” J. Phys. Conf. Ser., 2021, doi: 10.1088/1742-6596/1816/1/012001. [Google Scholar]
- E. M. Woldamanuel and F. D. Diba, “Enhanced adaptive code modulation for rainfall fade mitigation in Ethiopia,” EURASIP J. Wirel. Commun. Netw., 2022, doi: 10.1186/s13638-021-02085-0. [Google Scholar]
- X. Shaoxiong, Z. Jingbo, and Duzhuoqun, “Research of Extreme Precipitation Variation in Shanxi Based on R / S Analysis,” IOP Conf. Ser. Earth Environ. Sci., 2020, doi: 10.1088/1755-1315/513/1/012067. [Google Scholar]
- A. Zaki, B. H. A. Bakar, M. A. M. Johari, and Y. Jusman, “Application of Image Processing for Detection of Corrosion Using Ground Penetrating Radar,” 6th Int. Conf. Inf. Commun. Technol. Syst., no. January, 2010. [Google Scholar]
- S. Riyadi, H. A. Ashari, and Asroni, “Prediction of TOEFL Completion Exam Using Support Vector Machine ( SVM ).” [Google Scholar]
- F. Firdausa, P. N. Sriwijaya, K. Palembang, and S. Selatan, “Simulation of monthly rainfall in the city of Palembang using artificial neural networks,” vol. 9, pp. 143–150, 2020, doi: 10.22225/pd.9.2.1858.143-150. [Google Scholar]
- I. S. Dharma, P. Doddy, H. Ardana, and U. N. Rai, “Artificial Neural Networks for Modeling Rainfall-Runoff in River Watersheds (DAS) on the Island of Bali,” no. January 2011, 2017. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.