Open Access
Issue
BIO Web Conf.
Volume 144, 2024
1st International Graduate Conference on Smart Agriculture and Green Renewable Energy (SAGE-Grace 2024)
Article Number 06002
Number of page(s) 8
Section Sustainable Construction and Material Science
DOI https://doi.org/10.1051/bioconf/202414406002
Published online 25 November 2024
  • W. S. Abdullah and A. S. Alsharqi, “Rehabilitation of medium expansive soil using cement treatment,” Jordan Journal of Civil Engineering, vol. 5, pp. 343-356, 01/01 2011. [Google Scholar]
  • D. Barman and S. K. Dash, “Stabilization of expansive soils using chemical additives: A review,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 14, no. 4, pp. 1319-1342, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.jrmge.2022.02.011. [CrossRef] [Google Scholar]
  • A. R. Estabragh, H. Rafatjo, and A. Javadi, “Treatment of an expansive soil by mechanical and chemical techniques,” Geosynthetics International, vol. 21, pp. 233-243, 06/01 2014, doi: 10.1680/gein.14.00011. [CrossRef] [Google Scholar]
  • A. Sorsa, “Engineering Properties of Cement Stabilized Expansive Clay Soil,” Civil and Environmental Engineering, vol. 18, no. 1, pp. 332-339, 2022, doi: https://doi.org/10.2478/cee- 2022-0031. [CrossRef] [Google Scholar]
  • A. S. A. Al-Gharbawi, A. M. Najemalden, and M. Y. Fattah, “Expansive Soil Stabilization with Lime, Cement, and Silica Fume,” Applied Sciences, vol. 13, no. 1, p. 436, 2023, doi: https://doi.org/10.3390/app13010436. [Google Scholar]
  • N. Malathi, D. N. Komala, S. Shabeena, and V. C. Jaya Saahithya, “Stabilization of Expansive Soil by Using Lime and Reinforcement With Geo-Textile,” IOP Conference Series: Materials Science and Engineering, vol. 1112, no. 1, p. 012023, 2021/04/01 2021, doi: 10.1088/1757- 899X/1112/1/012023. [CrossRef] [Google Scholar]
  • N. Varma, T. Kumar, and V. Nagaraju, “Compressive Strength of High Plastic Clay Stabilized with Fly Ash-Based Geopolymer and Its Synthesis Parameters,” Singapore, 2021: Springer Singapore, in Transportation, Water and Environmental Geotechnics, pp. 25-37, doi: https://doi.org/10.1007/978-981-16-2260-1_3. [Google Scholar]
  • S. Ameen, A. Abdulkareem, and N. Mahmood, “Shear strength behavior of organic soils treated with fly ash and fly ash-based geopolymer,” Journal of the Mechanical Behavior of Materials, vol. 32, 05/03 2023, doi: 10.1515/jmbm-2022-0264. [CrossRef] [Google Scholar]
  • A. Mircea, L. S. Irina, and S. Anghel, “Effects of Eco-cement (GGBS) on the Expansive Soil Strength,” 2014. [Google Scholar]
  • W. Mila Kusuma, K. S. Putu Tantri, and R. Mafrita, “The Performance of Ca(OH)2 to Reduce the Plasticity Index and Increase the Shear Strength Parameter for Expansive Soil,” Journal of the Civil Engineering Forum, vol. 8, no. 3, 07/28 2022, doi: https://doi.org/10.22146/jcef.3455. [Google Scholar]
  • E. Kalkan, S. Akbulut, A. Tortum, and S. Çelik, “Prediction of the unconfined compressive strength of compacted granular soils by using inference systems,” Environmental Geology, vol. 58, pp. 1429-1440, 10/01 2008, doi: 10.1007/s00254-008-1645-x. [Google Scholar]
  • S. Suman, M. Mahamaya, and S. K. Das, “Prediction of Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilised Soil Using Artificial Intelligence Techniques,” International Journal of Geosynthetics and Ground Engineering, vol. 2, no. 2, p. 11, 2016/04/08 2016, doi: https://doi.org/10.1007/s40891-016-0051-9. [CrossRef] [Google Scholar]
  • O. Gunaydin, A. Gokoglu, and M. Fener, “Prediction of artificial soil’s unconfined compression strength test using statistical analyses and artificial neural networks,” Advances in Engineering Software, vol. 41, no. 9, pp. 1115-1123, 2010/09/01/ 2010, doi: https://doi.org/10.1016/j.advengsoft.2010.06.008. [CrossRef] [Google Scholar]
  • S. K. Das, P. Samui, and A. K. Sabat, “Application of Artificial Intelligence to Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilized Soil,” Geotechnical and Geological Engineering, vol. 29, no. 3, pp. 329-342, 2011/05/01 2011, doi: https://doi.org/10.1007/s10706-010-9379-4. [CrossRef] [Google Scholar]
  • A. Tabarsa, N. Latifi, A. Osouli, and Y. Bagheri, “Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines,” Frontiers of Structural and Civil Engineering, vol. 15, no. 2, pp. 520-536, 2021/04/01 2021, doi: https://doi.org/10.1007/s11709-021-0689-9. [CrossRef] [Google Scholar]
  • Y. Bagheri, F. Ahmad, and M. A. M. Ismail, “Strength and mechanical behavior of soil–cement–lime– rice husk ash (soil–CLR) mixture,” Materials and Structures, vol. 47, no. 1, pp. 55-66, 2014/01/01 2014, doi: https://doi.org/10.1617/s11527-013-0044-2. [CrossRef] [Google Scholar]
  • R. A. Mozumder and A. I. Laskar, “Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network,” Computers and Geotechnics, vol. 69, pp. 291-300, 2015/09/01/ 2015, doi: https://doi.org/10.1016/j.compgeo.2015.05.021. [CrossRef] [Google Scholar]
  • C. Anitescu, E. Atroshchenko, N. Alajlan, and T. Rabczuk, “Artificial neural network methods for the solution of second order boundary value problems,” Computers, Materials & Continua, vol. 59, no. 1, pp. 345-359, 2019. [CrossRef] [Google Scholar]
  • Y. Jusman, M. Sakatri, and A. Zaki, “Machine Learning for Cracks Level Classification on Concrete Surfaces Using Histogram Oriented Gradient Features,” in 2023 International Conference on Information Technology Research and Innovation (ICITRI), 2023: IEEE, pp. 49-53. [Google Scholar]
  • S. Riyadi and H. A. Ashari, “Prediction of TOEFL Completion Exam Using Support Vector Machine (SVM),” in 2023 International Conference on Information Technology and Computing (ICITCOM), 2023: IEEE, pp. 29-33. [Google Scholar]
  • S. Riyadi, A. D. Andriyani, A. M. Masyhur, C. Damarjati, and M. I. Solihin, “Detection of Indonesian Hate Speech on Twitter Using Hybrid CNN-RNN,” in 2023 International Conference on Information Technology and Computing (ICITCOM), 2023: IEEE, pp. 352-356. [Google Scholar]
  • B. T. Pham, S. K. Singhº, and H.-B. Ly, “Using Artificial Neural Network (ANN) for prediction of soil,” Vietnam Journal of Earth Sciences, vol. 42, no. 4, pp. 311-319, 2020. [Google Scholar]
  • A. Ajiboye, R. Abdullah-Arshah, H. Qin, and H. Isah-Kebbe, “Evaluating the effect of dataset size on predictive model using supervised learning technique,” Int. J. Comput. Syst. Softw. Eng, vol. 1, no. 1, pp. 75-84, 2015. [CrossRef] [Google Scholar]
  • D. R. Goutham and A. Krishnaiah, “Prediction of Unconfined Compressive Strength of Expansive Soil Amended with Bagasse Ash and Lime Using Artificial Neural Network,” 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.